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 The Annals of Probability
 1974, Vol. 2, No. 5, 926-941

 THE OPTIMAL REWARD OPERATOR

 IN DYNAMIC PROGRAMMING

 BY D. BLACKWELL,' D. FREEDMAN'

 AND M. ORKIN2

 University of California, Berkeley

 Consider a dynamic programming problem with analytic state space

 S, analytic constraint set A, and semi-analytic reward function r(x, P, y)

 for (x, P) e A and y e S: namely, {r > a} is an analytic set for all a. Let Tf
 be the optimal reward in one move, with the modified reward function

 r(x, P, y) + f(y). The optimal reward in n moves is shown to be TAO, a
 semi-analytic function on S. It is also shown that for any n and positive

 a, there is an e-optimal strategy for the n-move game, measurable on the

 a-field generated by the analytic sets.

 1. Introduction. There is a state space S, endowed with a u-field u(S). Let
 VT(S) be the set of all probabilities on a(S). There is a given subset A of S x

 VT(S), whose x-section Ax is nonempty for all x e S. There is a nonnegative

 function r(x, P, y) of (x, P) e A and y e S, which is a a(S)-measurable function
 of y for each pair (x, P). When you are at x e S, you can select any P e Ax, and
 move to a new state y e S selected at random according to P. You receive the

 reward r(x, P, y). If you select P, your expected reward is Ss r(x, P, y)P(dy),
 and your optimal reward in one move is

 UA(x) = SUPP e A, Ss r(x, P, y)P(dy) .

 Even under very stringent regularity conditions, ul need not be a(S)-measurable:

 see example (45) below. To get around this for now, let S* be the usual outer
 integral. Compare Dubins and Savage (1965) pages 8-9.

 Suppose you are allowed to move twice. If your first move is to y, the most

 you can get on your second move is u1(y). So your optimal reward in two
 moves is

 u2(x) = SupPeA SS [r(x, P, y) + ul(y)]P(dy),

 and so on. To study this formally, it is convenient to introduce the optimal

 reward operator T which transforms nonnegative functions f on S as follows:

 (1) (Tf )(x) = sup SeA [r(x, P, y) + f(y)]P(dy)
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 OPTIMAL REWARD OPERATOR 927

 Let 0 be the function which vanishes identically. Then TW0 is your optimal

 reward in n moves, over the class of all strategies, measurable or not.

 Fix pu e 7(S). Under mild regularity conditions, we will show that T"O is ,u-
 measurable; and there is a p-measurable strategy whose expected reward in n
 moves is closeXo (T"O)(x). The conditions are that S and A be analytic, and r

 be semi-analytic. A function f is semi-analytic if its domain is an analytic set, it

 takes nonnegative values, and If > a} is analytic for all a > 0. More precisely,

 we show that T"O is semi-analytic, and that there are s-optimal strategies meas-

 urable over the a-field generated by the analytic sets. As usual, 7w(S) is endowed
 with the weak * topology and the a-field this topology generates.

 If S, A, and r are Borel, Strauch (1966) showed that the optimal reward over

 measurable strategies is nearly measurable (an exact statement is too complicated

 to be helpful here) in the starting state, and can almost be realized by nearly

 measurable strategies of various special kinds. Strauch (1967) and Sudderth

 (1971) show that nearly measurable strategies do as well as nonmeasurable ones,

 when S, A, and r are Borel, and the total return is uniformly bounded. Our

 results hold for more general S, A, and r, and for unbounded returns. We con-

 struct analytically measurable strategies which are available everywhere, instead

 of Borel measurable strategies which are available a.e. And we provide a count-

 ably additive method for evaluating nonmeasurable strategies (which is at least

 as generous as the finitely additive methods). The main novelty, however, is

 showing how to compute the optimal reward from T, without leaving the class

 of functions which can be integrated by the ordinary countably additive method.

 Our work overlaps to some extent with unpublished notes by P. A. Meyer. The
 general issue of measurability of optimal rewards and existence of nearly optimal

 and measurable strategies was raised by Dubins and Savage (1965) pages 35-38.

 Section 2 reviews some known facts about analytic sets. Section 3 reviews a

 selection theorem of von Neumann (1949) and Mackey (1957). Section 4 intro-

 duces the semi-analytic functions. Section 5 discusses compact metric state
 spaces. Section 6 establishes the dynamic programming results. Section 7 pre-
 sents some examples.

 2. Analytic sets. A detailed discussion of analytic sets, with proofs for most

 of the facts listed below, can be found in Kuratowski (1966). Let N be the set

 of sequences of positive integers, endowed with the product topology. So N is

 homeomorphic to the irrationals. Let A be a separable metric set. Then A is

 analytic provided there is a continuous function f on N whose range f(N) is A.

 (2) Any complete, separable metric set is analytic.

 (3) Any Borel subset (that is, a set in the afield generated by the open sets)
 of an analytic set is analytic.

 (4) Countable unions, intersections, and products of analytic sets are analytic.

 (5) Let f be a Borel measurable mapping from the analytic set S into the
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 928 D. BLACKWELL, D. FREEDMAN AND M. ORKIN

 analytic set T. If A is an analytic subset of 5, then f(A) is an analytic subset

 of T. If B is an analytic subset of T, then f-1(B) is an analytic subset of S.

 (6) Let A be an analytic subset of the analytic set S. Then A is universally

 measurable; that is, if je is any probability on the Borel subsets of 5, then A is

 u-measurable. For x e N, let L(x) = {y: y e N and yi < xi for all i}. Let f be a
 continuous function on N with f(N) = A. Then

 pa(A) = supXeN dff[L(x)]}-

 Facts (7)-(9) will be used only for constructing examples.

 (7) There is an analytic subset of the unit interval whose complement is not

 analytic. In fact, there is a Borel subset of the unit square (even a G,), whose
 projection on the horizontal axis is analytic but not Borel.

 The complement of an analytic set relative to a Borel subset of a complete

 separable metric set is called complementary analytic.

 (8) There is a Borel subset B of the unit square, whose projection on the

 horizontal axis is the whole unit interval: but there is no Borel function f of

 the unit interval into itself, with (x,f(x)) e B for all x.

 For a discussion of (8), see Blackwell (1968).

 (9) According to G6del (1938), it is consistent with the usual axioms of set

 theory to assume there is a complementary analytic subset of the unit square,

 whose projection on the horizontal axis is not Lebesgue measurable.

 We will use the notion of the weak* topology on 7r(S), and review the main
 points here. For a detailed discussion, see Parthasarathy (1967) Sec. II. 6. Let

 S be a separable metric set. Let PF, and P be probabilities on the Borel subsets

 of S. By definition, PF -> P in the weak* topology, provided Ss f dP ->Ss f dP
 for all bounded, continuous f.

 (10) If S is compact metric, so is 7w(S) in the weak* topology.

 (11) If f is bounded and continuous on 5, there are bounded, uniformly

 continuous f, on S with f,, T f.

 (12) S can be homeomorphically embedded in a compact metric set 5*.

 After the embedding, 7r(S) becomes the set of pu e 7r(S*) which assign outer
 measure 1 to 5, with the relative topology.

 (13) 7c(S) is separable metric. The Borel a-field on 7w(S) is the a-field gener-
 ated by the weak* topology.

 (14) The Borel afield is also generated by the functions j -u> S fd dp, for

 (a) all bounded, continuous f.

 (b) all indicator functions f of any class of sets which generates the Borel
 v-field in S.
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 OPTIMAL REWARD OPERATOR 929

 If S is Borel (that is, a Borel subset of a complete separable metric set), then

 7T(S)' is Borel. If S is analytic, we will show ir(S) is analytic. If S is a univer-
 sally measurable subset of S*, we will show yr(S) is a universally measurable
 subset of r(S*).

 3. A selection theorem.

 (15) PROPOSITION. Let S and T be analytic sets. Let W be the a-field in S
 generated by the analytic sets. Let p project S x T onto S. Let A be an analytic

 subset of S x T. Then there is an SV-measurable function t from pA to T, with

 (x, t(x)) e A for all x e pA.

 NOTE. >v('-measurable means t-'B e XJV for all Borel subsets B of T.

 PROOF. Let f be a continuous function from N to S x T, whose range is A.

 So p of is a continuous function on N whose range is pA; and f-lp-4(x) is a
 nonempty closed subset of N for x epA. Let 0(x) be the least element of

 fj-p-1(x), in the lexicographic order, for x epA. So 0 maps pA into N. Now
 pA e JV by (5). You can check that 0 is pA n Retmeasurable. Finally, t is
 the projection of f o s on T. 1

 This result is due to Mackey (1957) and von Neumann (1949). Even if S, T,

 and A are Borel, and projs A = S, there may not be a Borel selector (8).

 4. Semi-analytic functions. Let f be a nonnegative, real-valued function de-

 fined on the analytic set S. Then f is semi-analytic provided the set {x: f(x) > a)
 is analytic for all nonnegative a. See Kuratowski (1966) Sec. 35, XI. You can

 verify the following:

 (16) Iff is semi-analytic on S, then {x: f(x) ? a) is analytic.

 (17) Any nonnegative Borel measurable function on S is semi-analytic.

 (18) Suppose f is semi-analytic on S, and T is an analytic subset of S. The

 restriction of f to T is semi-analytic on T.

 (19) Supposef and g are semi-analytic functions on S. Thenf + g, max{f, g},

 min {f, g} andfg are also semi-analytic. If c ? 0, then cf is also semi-analytic.

 (20) Let f,, be semi-analytic on S for each n. Suppose fi j f or fin I f. Then
 f is semi-analytic.

 (21) Letf be a semi-analytic function on S. Let g be a Borel measurable

 function from the analytic set T into S. Then f o g is semi-analytic on T.

 (22) Iff is semi-analytic on S, then f is universally measurable; so f can be
 integrated with respect to any probability on the Borel subsets of S.

 (23) EXAMPLE. Let A be an analytic subset of the unit interval, whose

 complement is not analytic. Then 1A is semi-analytic, but 1 - 1A is not semi-
 analytic.
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 930 D. BLACKWELL, D. FREEDMAN AND M. ORKIN

 (24) EXAMPLE. A Borel measurable function composed with a semi-analytic

 function need not be semi-analytic. Again, let A be an analytic subset of the

 unit interval, whose complement Ac is not analytic. Then I Io 1 A = 1 which
 is not semi-analytic.

 5. The compact metric case. Let S be a compact metric set. Let 7r(S) be the

 set of probability measures on the afield of Borel subsets of S. Endow 7r(S)

 with the weak* topology, so 7u(S) is again compact metric. For a detailed dis-

 cussion of 7r(S), see Dubins and Freedman (1965) or Parthasarathy (1967).

 (25) LEMMA. If A is an analytic subset of S, and a is a nonnegative real number,

 then {p: p e 7r(S) and [e(A) > a} is an analytic subset of r(S).

 NOTE. p(A) is well defined in (6).

 PROOF. Let 2S be the set of nonempty, compact subsets of S, endowed with
 the usual compact metric topology (Hausdorff (1957) Section 28). If Kn and K

 are elements of 2S, then Kn -- K in this topology provided

 (26) for each s e K, there are s' e Kn with sn -> s, and

 (27) if S, e Kn ands, s, then s e K.
 Since A is analytic, there is a continuous function f on N with f(N) = A.

 Define L(x) as in (6). We claim that the function x --f(L(x)) is continuous from

 N to 2S. Indeed, L(x) is compact, so f(L(x)) e 2S. Suppose x(n) -, x in N. We

 have to show f[L[(x(n)]] -> f[L(x)]. To verify (26), suppose y e L(x) and s=
 f(y). Let y(n)i = min [x(n)i, y%]. Then y(n) e L(x(n)) and y(n) -> y, so f(y(n)) ->
 f(y). To verify (27), let zi = sup, x(n)i, so z e N. Let y(n) e L(x(n)), and suppose
 S, = f(y(n)) -> s in S. Now y(n) e L(z), which is compact. By passing to a sub-
 sequence, suppose y(n) -y in N. Clearly, y e L(x). But s = limf(y(n)) = f(y).

 The function (p, K) -1(K) is upper semi-continuous from 7r(S) X 2S to the
 unit interval, by Dubins and Freedman (1965) Theorem 3.8. So the composition

 (p, x) -> p{f[L(x)]} is upper semi-continuons from r(S) x N to the unit interval.
 In particular,

 B = {(p, x): p{f[L(x)]} > a)

 is Borel in r(S) x N; in fact, B is an F,. Now {p: 1a(A) > a) is the projection
 of B on the p-axis by (6), and is analytic by (5). L

 Let i be Lebesgue measure on the unit interval. The next result is a known

 consequence of Fubini's theorem.

 (28) LEMMA. Let (S, X/, P) be a probability triple. Let f be an JY-measurable
 function from S to the unit interval. Then {(y, z): f(y) > z) is a product-measurable
 subset of S x [0, 1]. And

 Ssf(y)P(dy) = (P x 2){(y, z) f(y) > z}.

 (29) LEMMA. Let r(x, Q, y) be a semi-analytic function from S x 7r(S) x S to
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 OPTIMAL REWARD OPERATOR 931

 the unit interval. Let

 h(x, Q, P) = Ss r(x, Q, y)P(dy) .

 Then h is semi-analytic on S x 7r(S) x 7r(S).

 PROOF. Let r = S x l:(S) x S x [0, 1], a compact metric set in the product
 topology. Define the function g from S x 7r(S) x 7r(S) to 7r(F) as follows:
 g(x, Q, P) is P x i installed on the (x, Q)-slice of F. More formally, if 5b is a
 continuous function on F, then the g(x, Q, P)-integral of 5b is

 s~x[O'l] 0(X, Q. y, z)(P x 2)(dy, dz) .

 We say that g is continuous. To check this, approximate / by finite linear com-

 binations of functions /' of the form 0j1(x)q52(Q)0b3(y)0b4(z), where 01 and 03 are
 continuous functions on S, while 0, is a continuous function on 7r(S), and 0, is
 a continuous function on the unit interval. This is possible by Stone-Weierstrass.

 The g(x, Q, P)-integral of (b depends continuously on (x, Q, P). Therefore, so
 does the g(x, Q, P)-integral of q5.

 Let A = {(x, Q, y, z): r(x, Q, y) > z}. We say A is an analytic subset of F.

 Indeed, A = U, A, where t is a positive rational, and A, = {r(x, Q, y) > t} n
 {t > z}. Each A, is analytic, so A is analytic, using (4). Let A(Z Q) be the (x, Q)-
 section of A. Use (28), with the a-field generated by the analytic sets for sV:

 h(x, Q, P) = (P x 2)(A(XQ)) = g(x, Q, P)(A) .
 So

 {h > a} = g-1{[p: p e 7i(F) and p(A) > a),
 which is analytic by (25) and (5). [

 (30) COROLLARY. Let r(x, Q, y) be a semi-analytic function from S x 7r(S) x S
 to the unit interval. Let

 h(x, P) = ss r(x, P, y)P(dy).

 Then h is semi-analytic on S x 7r(S).

 PROOF. The map (x, P) -> (x, P, P) is Borel measurable, from S x 7r(S) to
 S x 7t(S) x 7r(S). Compose the h of (29) with this map, and use (21). l

 (31) COROLLARY. Let r(x, Q, y) be a semi-analytic function on S x 7r(S) x S.
 Let

 h(x, P) = Ss r(x, P, y)P(dy).

 Then h is semi-analytic on S x 7r(S).

 PROOF. Let rn = min {r, n}. Then rn and n-'r, are semi-analytic by (19). And
 0 < n-lr_ < 1. So

 h"(x, P) = n S n-'r,(x, P, y)P(dy)

 is semi-analytic by (30). But hn' T h by monotone convergence. So h is semi-
 analytic by (20). E
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 932 D. BLACKWELL, D. FREEDMAN AND M. ORKIN

 (32) COROLLARY. Let A be an analytic subset of S x 7r(S). Let r(x, Q, y) be
 a semi-analytic function on A x S. Let

 h(x, P) = Ss r(x, P, y)P(dy)

 h*(x) = SUPPGA, h(x, P) .

 Then h is semi-analytic on A, and h* is semi-analytic on projs A.

 PROOF. Let r*(x, P, y) = r(x, P, y) for (x, P) e A and y e S and let r*(x, P,

 y) = 0 elsewhere on S x ir(S) x S. Then r* is semi-analytic. So (31) makes

 Ss r*(x., P, y)P(dy) semi-analytic. But h is the restriction of this function to A:
 use (18) to make h semi-analytic. Then {h* > a) = projs {h > a} is analytic by
 (5).

 6. Dynamic programming. Return to the dynamic programming problem of

 Section 1. A strategy s of length n is a sequence of functions

 Xi1_ SX11 (X11 X2) 5Xl> S. X" (xi XXn) -+SX19.. xx

 from S, S2, .* , S" to 7r(S), subject to the constraint

 SxX1 XxieAxi for i= 1, .,n.
 For the moment, there are no measurability conditions. The reward of s at

 X = (x1 i., X%+1) is

 rn(s, x) = r(x1, s., X2) + + r(xn, s.,} .., Xn+1)

 The upper expected reward p"(s, x1) of s starting from xl e S is the n-fold iterated
 upper integral of r"(s, x) with respect to the n measures

 Szl, ...' ,xn(dxn+l) X* * * , s,(dX2) X

 In the absence of measurability conditions, these n measures on S cannot be

 combined into a single measure on S". If x e S and s is a strategy of length

 n + 1, the x-section s5 of s is this strategy of length n:

 X1 _ SXXI (X1, X2) _ Sz.VI (Xi, X X") - sXlX19..IX.A%

 If s is a strategy of length k + 1,

 (33) Pk+1(S' x) = s [r(x, s, y) + pk(s, y)]s,(dy)

 The optimal reward operator T was defined in (1); and 0 vanishes identically;

 and uk = TkO. The next result shows that u, is the optimal reward in n moves,
 with nonmeasurable strategies allowed.

 (34) PROPOSITION. (a) u.(x) >-p,(s, x)for all x e S and strategies s of length n.
 (b) Fix n and positive s. There is a strategy s of length n, such that

 pn(s, x) > un(x) - s when u"(x) < co
 > l/; when u"(x) = oo .
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 OPTIMAL REWARD OPERATOR 933

 PROOF. Claim (a). This is clear for n = 1. Suppose it for n = k. Using (33),

 Pk+l(s, X) Ss [r(x, S, y) + Uk(y)]Sx(dY)

 ? (Tuk)(x) = Uk+l(X) X

 Claim (b). This is clear for n = 1. Suppose it for n = k. Abbreviate 0E(z) =

 z - sfor z < so, and 0,(z) = 1/s for z = cA. Use the case n = 1 on the reward
 function r(x, P, y) + Uk(Y) to get a strategy t of length 1, with

 5s [r(x, to, Y) + Uk(Y)]t,(dY) > OJUk+l(x)1 X

 If fn T f andf1 is bounded below, then S* f. T S* f. Consequently, there is a j(x)
 so large that

 SS [r(x, to, y) + 1/1j(z)(Uk(y))]t,(dY) > jUk+1(X)]X

 Use the induction hypothesis to generate a strategy t' of length k, with

 Pk(t, Y) > 1/j(j4uk(Y)] for all y.
 Outer integrals are order-preserving, so

 SS* [r(x, to, y) + pk(t, y)]t.(dy) > 6O[uk+l(x)]X

 Let s be the strategy of length k + 1, with s. = t. and sx = to. Use (33). 1

 For the rest of this section, make the following measurability assumptions.

 (35) CONDITIONS. The state space S is analytic, and is endowed with the
 Borel a-field. Embed S homeomorphically into a compact metric set S*. Let
 ir(S) be the set of probabilities on S, with the weak* topology. Then ir(S) is
 homeomorphic to {p: p e 7r(S*) and 1u(S) = 1}, with the relative topology, by
 (12). Here, p(S) is well defined by (6). So 7r(S) is analytic by (25) and (4).
 And S x it(S) is analytic in the product topology. The contraint set A is assumed
 analytic. So, A x S is analytic in the product topology. Remember that the
 x-section Ax of A is nonempty for all x e S. The reward function r is assumed
 semi-analytic on A x S.

 The optimal reward operator T is defined for semi-analytic functionsf by

 (36) (Tf)(x) = SupPSA, Ss [r(x, P, y) + f(y)]P(dy) .
 (37) THEOREM. If conditions (35) hold, Tf is well defined by (36) and is semi-

 analytic on S for each semi-analytic function f on S.

 PROOF. For a moment, fix (x, P). Then r(x, P. .) is semi-analytic on S, so

 r(x, P, .) + f is semi-analytic on S by (19). Consequently, the integral is de-
 fined by (22). This proves Tf well-defined. Why is it semi-analytic? The map
 (x, P, y) -> y is Borel. So (x, P, y) ->f(y) is semi-analytic by (21). And

 r1(x, PF y) = r(x, P, y) + f(y)

 is semi-analytic by (19). Now use (32) on r,. [

This content downloaded from 
�������������134.154.190.2 on Mon, 02 May 2022 01:37:17 UTC������������� 

All use subject to https://about.jstor.org/terms



 934 D. BLACKWELL, D. FREEDMAN AND M. ORKIN

 (38) COROLLARY. If conditions (35) hold, T"f is well defined by (36) and is

 semi-analytic on S, for each semi-analytic function f on S.

 This is one of the main results of the paper.

 The next main result (43) shows there are nearly optimal analytically meas-

 urable strategies. Here are some preliminaries.

 (39) LEMMA. Let S, T, and U be analytic sets. Let f map S into T, and let g

 map T into U; so g o f maps S into U. Let X = S, T, or U. Let A,?Wx be the Borel

 a-field in X; let JVx be the a-field generated by the analytic subsets of X; let x
 be the a-field of universally measurable subsets of X. So ??x c Slx C ax Sup-

 pose g is analytically measurable: g-l( ) C 4 V) .

 (a) Iff is Borel, that is, f-'(?,) c MS, then f -(-VT) c AS.
 (b) If f is Borel, then g of is analytically measurable.

 (c) If f is universally measurable, that is, f -'(?T) c x/As, then g o f is univer-
 sally measurable.

 PROOF. Claim (a). With the help of (5),

 f -(B\C) = (f-l(B))\(f-1(C)) e -s ,
 for analytic subsets B and C in T. So f-1(D) e -VS for all sets D in the algebra
 generated by the analytic sets. Here, B\C is the set of points in B but not in C.

 Claim (b). This follows from (a).

 Claim (c). Let p be a probability on Ms. There is a p-null Ne Ms and a
 Borel function f' with f = f' off N. Now g o f' is analytically, and so, univer-
 sally measurable by (b), and g o f' = g o f off N. [

 (40) PROPOSITION. Let U and V be analytic sets. Let f > 0 be universally

 measurable on U x V and let 0 > 0 be Borel measurable on U x V. Let u -> tu be
 universally measurable from U to 7r(V), where 7r(V) has the Borel a-field generated

 by the weak* topology. Let p be a probabiliy on U.

 (a) u --> S, b(u, v)tq,(dv) is universally measurable.
 (b) There is a unique probability p x t on U x V such that

 S UXV 0 d(p x t) = u S v 0(u, v)tu(dv)p(du)

 for all nonnegative Borel 0.

 (c) v ->f(u, v) and u -* S f(u, v)tu(dv) are universally measurable.
 (d) S uxv f d(p x t) = S u S vf(u, v)t, (dv)p(du).

 PROOF. Claim (a). It is enough to do this when 5/ is the indicator of a Borel

 rectangle. Then (u, P) -+ S 0(u, v)P(dv) is Borel on U x r(V). Compose this
 function with the universally measurable map u -> (u, to) and use (39 c).

 Claim (b). Use (a) and monotone convergence.

 Claim (c). For the first claim, consider measures concentrated on {u} x V.
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 For the second, there is a Borel function f' and a Borel set G, such that

 (p x t)(G) = 1 and f = f' on G. Let G. be the u-section of G, and let G* =
 {u: t.(G.) = 1). Then G* is universally measurable by (a), p(G*) = 1 by (b).
 Fix u e G*. Now f(u, v) = f'(u, v) for all v e G., which has t.-measure 1. So

 S v f(u, v)t,(dv) = S v f'(u, v)t,(dv) for u e G*.

 The right side is universally measurable in u by (a), and p(G*) = 1, so the left

 side is p-measurable; but p is arbitrary.

 Claim (d). Continuing the same argument, p(G*) = 1 shows

 Su Svf(u, v)t.(dv)p(du) = SU Svf'(u, v)t.(dv)p(du)

 = xuxvfId(p x t) by(b)

 = Suv fd(p x t),

 where the last line follows because f = f' with (p x t)-probability 1.

 It will be helpful to establish this result in several dimensions.

 (41) COROLLARY. Let U1, *.., U1+, be analytic sets. Endow r(U,) with the
 Borel a-field generated by the weak* topology. Let

 U1 - tU19 (Ul U2) -* tU U2 * .. * (U1 ,... ) > tul -uln

 be universally measurable functions from U1, U1 x U2, * *, U, x ... x Un to 2r(U2),
 7r(U3)* *.., 7 r(U"+1). If f is a function on U1 x ... X U"1+J, its u-sectionfu by u e U1

 is this function on U2 x ... x U,+1:

 (UP . . . 9 Un+l) - f(U, U2 . . *.9 Un+l)

 (a) For each u e U1, there is a unique probability t. on U2 X *x x U,+1, such that

 S U2x ... x U1+1 Ou dtu * S 2. .. SU,+ 2, *, * . Un+?)tuu2, ... I ,u(dUn+1) * * * tu(dU2) 9

 for all nonnegative Borel 0 on U1 ... U1+,. The integral is a universally measurable
 function of u.

 (b)

 s U2x * x U,+, fu dtu = S U2 * Su,,+, f(u, U2, . * I Un+l)tuu2......un(dUn+) ... tu(dU2)

 for all nonnegative universally measurable f on U1 x ... x U.+,. The integral is a
 universally measurable function of u.

 (c) u -* tu is universally measurable.
 Suppose n > 2. For u e U,, let tu be the sequence of functions

 U2 ->tuu,2 (UP U3) - tuu2u39 * *9 (U' U21 .. * U j" Un tUu2, ,un

 from U2, U2 X U3, *... U2 X ... X Un to ir(U3) 7r(U4), . . . I ,(Un+l)

 (d) (u, v) -+ tVu is universally measurable on U, x U2.

 PROOF. This is a straightforward but messy induction from (40). You can

 reduce the number of factors by one if you group the first two together. [1
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 Now return to dynamic programming under conditions (35). A strategy s of

 length n and its x-section s5x and its reward r,,(s, x) at x = (x1, . *, x,+1) are
 defined as in the general case. The strategy s is called analytically or univer-

 sally measurable if all the component functions are; as usual, r(S) is endowed

 with the Borel a-field generated by the weak* topology.

 (42) LEMMA. Suppose (35). Let s be a universally measurable strategy of length

 n. Define the probability S. on Si, by (41).

 (a) r, (SI X1, X2, *. . X+1) is a universally measurable function on S"'+.

 (b) pn(s, x) = 5Ss rn(s, x, x2, *.. Xn+l))sX(dx2* dx,+l) is a universally meas-
 urable function of x e S.

 (c) Suppose n ? 2. Then p,,_(sX, y) is a universally measurable function of
 (X, y) e S2, and

 p,(sx) = Ss [r(x, s., y) + pn-(s", y)]ss(dy)-

 PROOF. For (a), use (39 c). Then (b) follows from (41 b), and (c) from (41 d). L

 The next theorem is the second main result of the paper. Remember un = T71O
 is the optimal reward in n moves, even allowing nonmeasurable strategies.

 (43) THEOREM. Suppose conditions (35). Fix a positive integer n, and a positive

 s. There is an analytically measurable strategy s of length n, such that

 pn(s, x) > u(x) -e when u,,(x) < co
 > I1/,e when u,,(x) = cc .

 PROOF. The case n = 1. Let

 h(x, P) = s r(x, P, y)P(dy) for (x, P) e A .

 So h is semi-analytic by (32). And u,(x) = suppeA h(x, P). Fix a positive integer
 k with k > 1/-. For j = 0, 1, . . ., let

 Ai = {(x, P): (x, P) e A and h(x, P) > j/k} .

 So A, is analytic by (16), and A = AO D Al D .... Let Bj be the projection of
 Ai on S, so Bj is analytic by (5), and S = Bo B1 .... Let B* = nf
 which is also analytic by (4).

 Remember that _V is the a-field generated by the analytic subsets of S. Use

 (15) to find ?t-measurable functions tj from Bj to 2r(S), with (x, tj(x)) E A, for
 all x e B3. Use (15) again to find an SV-measurable function t* from B* to 7r(S)

 with (x, t*(x)) e Ak for all x e B*. Let

 SX = t3(x) for xeBj\B5+1 and j = 0, 1,..*
 = t*(x) for xeB*.

 This s is an analytically measurable strategy of length one. We say it is e-

 optimal. Indeed, pl(s, x) = h(x, sr). Fix j = 0, 1, . . . and x e Bj\Bj+1. Then
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 h(x, P) < (j + 1)/k for all P e A., because x Bj+l = projs {h > (j + l)/k}. So
 u1(x) < (j+ 1)/k. But (x, s.) e Aj = {h > j/k}, so

 h(x, so) > j/k > u,(x) - .

 Finally, B* = {u1 = ool. If x e B*, then (x, so) e Ak, so h(x, s.) > k > 1/e.
 The induction. Suppose k > 1 and the theorem holds for n = k. We must

 get it for n = k + 1. Fix e > 0; we will construct an S-optimal analytically

 measurable strategy s. The construction is made separately on the sets IUk+l < oo}
 and IUk+l = oo0. The second set is analytic by (38), so the first is CA.

 The set IUk+l < oo0. The modified reward function r(x, P, y) + Uk(y) is semi-
 analytic by (19) and (38). If you integrate out y with respect to P, and sup out

 P e A, you getuk+l(x). So, you can use the case n = 1 with the modified reward
 function to generate a ls-optimal analytically measurable strategy t of length

 one. Let t* be a se-optimal analytically measurable strategy of length k, for
 the original reward function, generated by the induction hypothesis.

 For this paragraph, restrict x to {Uk+l < oo}. The strategy s is defined start-
 ing from such x as follows: s. = t. and sx = t*. Clearly, it is analytically meas-
 urable. To see why it is e-optimal, notice that

 Uk+l(x) ? Ss [r(x, to, y) + Uk(y)]t$(dy) > Uk+1(X) -2

 Since uk+l(x) < 00, t{Uk = 00} = O. Using (42c),

 Pk+l(s, x) = Ss [r(x, t., y) + pk(t*, y)]tx(dy)

 > 5 (uk<} [r(x, to, y) + Uk(Y) - El]t,(dy)

 = S[ [r(x, t., y) + Uk(y)]t$(dy) - 2
 > Uki+ (x) - 2" - 12- = Uk+?(X) - 6.

 The set {Uk+l = oo0. Let

 h(x, P) = Ss [r(x, P, y) + Uk(y)]P(dy) ,

 a semi-analytic function of x and P by (38) and (31). Let n > 2. Let

 An ={(x, P): (x P) E A and h(x, P)>-1 and Pf k = ??} >

 So A. is analytic by (16) and (25). Let Be = Proj, An, analytic by (5). Use (15)
 to construct an analytically measurable function 0>n on Be, with (x, 0,(x)) e A.
 for x e B". Let 0 be an 6/n-optimal analytically measurable strategy of length

 k, generated by the induction hypothesis. Clearly, B. c tUk+l = 001. Define s
 on UL=2 B. as follows: if x e B,\B.-,, let s. = 0f(x) and sx =0. Clearly, s is
 analytically measurable. Why is it e-optimal? If x e B"\B"_-, then (x, s,) e A,,
 so SJtUk = C0OI > 1/n.
 Continuing with the help of (42c),

 Pk+l(S, X) = s [r(x, s., y) + pk(0, y)]sT(dy)

 >- S uk=} Pk(0, y)sx(dy)

 > n * 1 = 1 .
 6 6 n 6
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 To define s on {ukl = ?o}\U-=2 Bo, let

 A* ={(x, P): (x, P) e A and h(x, P) > +

 As before, A* is analytic. Clearly, {Uk+l = oo0 c Proj, A*. Use (15) to construct
 an analytically measurable function 0 on {Uk+l = ooI, such that (x, 0(x)) C A*
 when uk+ (x) = oo. Let t* be an e-optimal analytically measurable strategy of
 length k, generated by the induction hypothesis. For x e { =k o =o}\U q=2 B., let
 S., -b(x) and sx = t*. Clearly, s is analytically measurable. Why is it 6-optimal?
 Since (x, s.) e A* but x V B, it follows that (x, s.) V An, so Sx{Uk = 001 = 0. Using
 (42 c).

 Pk+l(S, x) = Ss [r(x, s., y) + pk(t y)]s.(dy)

 > s [r(x, s., y) + Uk(Y) - e]IS(dy)
 >1 +1

 This completes the construction of s. It is e-optimal and analytically meas-

 urable since all three pieces are. l

 NOTES. (a) In fact, our s. . xi is SVi-measurable. If S is uncountable, sVi
 is smaller than the a-field generated by the analytic subsets of Si.

 (b) If r is uniformly bounded, the argument generates Markovian strategies:

 SxI,--.,xi depends only on i and xi.
 (c) Clearly, us is non-decreasing in n. Let u00 = lim, un. Our argument will

 produce an analytically measurable strategy for the infinite game, which stops

 everywhere, and whose expected reward starting from x exceeds Oj[UcO(X)].
 Namely, let n(x) be the least n with u,(x) > OjuOO(x)]. So n(x) is analytically
 measurable in x. Use the theorem separately on each piece {n(x) = n}, to con-

 struct an -optimal strategy of length n. We define the reward of a nonmeasur-
 able strategy in the infinite game as the limit in n of what it can accomplish in

 n moves. Then we can do as well with analytically measurable strategies.

 (d) From (36)-(37),

 Un+l(X) = SUPPeA, s [r(x, P, y) + un(y)]P(dy)
 By monotone convergence, u0. ? Tuo.. The argument in (c) shows that equality
 holds. Indeed, suppose, s is the -optimal strategy for the infinite game. Let

 p0 = 0. Then

 Ss [r(x, so, y) + pn(x).l(Sx, y)]sx(dy) > Oj[uc(x)]

 Using (34a),

 (Tu.o)(x) _ Ss [r(x, sx, y) + u.(y)]s,(dy) > j[u.(x)]
 Let C -f 0. That is, under condition (35), the optimal reward in the infinite
 game is u., a semi-analytic function; u. satisfies the optimality equation Tuo: =
 uB; and there is an -optimal strategy which stops everywhere and is analytically

 measurable.
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 (e) We used the condition that r is semi-analytic in two critical places. First,

 we need it to prove that us is semi-analytic in (38). Second, we need r and uk

 to be semi-analytic in order to use the selection procedure (15) on {(x, P):

 (x, P) e A and 5 [r(x, P, y) + uk(y)]P(dy) ? a) in the proof of (43).
 (f) Dynamic programming problems are often formulated this way. There

 is a state space T, with a-field v(T), and an action set e with a-field v(e). There

 is a transition probability q(. I t, 0') on v(T), for each t e T and 0' e e. There is
 a reward function f(t, 0', t') on T x x X T. The transition probability and re-
 ward function are product measurable. Informally, if you are t C T, you can

 chose any 0' e e, and move to t' e T chosen at random from q(. I t, 0'); you re-
 ceive the reward f(t, 0' t').

 Such a problem can be reformulated in the constraint-set terms of the present

 paper as follows. The new state space S is T x 0, with the product a-field. The

 constraint set A is the range of the map

 (t, 0, 0') -* [(t, 0), q( t, 0') x ,

 from T x 0 x 0 to S x r(S); here, 66,, is point mass at 0'. The new reward
 function is

 r[(t, 0), P. (t', St)] =_ f(t, Of, t') .

 An original starting state t is translated into the starting state (t, 00), where 0,
 is a fixed (arbitrary) point of 0. Suppose T and 0 are analytic;, (T) and v(0)
 are the Borel u-fields, and f is semi-analytic. Then (35) is satisfied, for A is
 analytic by (5).

 Similarly, any constraint-set problem (S, A, r) can be formulated as an action-

 set problem, by introducing a new absorbing state oo V S. The appropriate
 action set is all of r(S). The transition probability q is

 q(. I x, a) = a when (x, a) e A
 = a. when (x, a) A.

 And r(x, a, y) is set equal to zero if (x, a) V A or y = oo. Again, 6. is point
 mass at oo.

 7. Examples.

 (45) EXAMPLE. There is a dynamic programming problem with S, A, and r

 Borel, but u1 not Borel.

 PROOF. Let S be the unit interval. Let 6Z be point mass at z, so z -* Z is
 continuous, and wr(S) = {6z: z e S} is compact. Let A = S x ro(S). Let B be a
 Borel subset of the unit square, whose projection on the x-axis B* is not Borel.

 Let r(x, 6, y) = 1B(X, z). Then S r(x, 6, y)6z(dy) = 1B(X, z), so

 U1(X) = SUPz lB(X, Z) = 1B*(X) * L

 (46) EXAMPLE. There is a dynamic programming problem with S, A, and r
 Borel, and A a product set, but no '-optimal Borel strategies of length one.
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 PROOF. Use the construction for (45). Suppose f is a function from S into

 S, and x --* 6 is I-optimal. If x e B*, then lB(Xlf(x)) exceeds -, so is 1. If
 x v B*, clearly, 1B(xf(x)) = 0. That is, 1B(xf(x)) = 1B*(X), which is not a
 Borel function. So f is not Borel. l

 (47) EXAMPLE. There is a dynamic programming problem with S, A, and r

 Borel, and u,(x) = 1. But there are no Borel strategies of length one.

 PROOF. Let S be the unit interval. Let B be a Borel subset of the unit square,

 whose projection on the x-axis is S, but which includes no Borel graph. Let

 A = {(x, 6,): (x, y) C B}, and r _ 1. L
 (48) EXAMPLE. Consistent with the axioms of set theory, there is a dynamic

 programming problem with Borel S, A, and r, and a universally measurable f,
 such that

 (49) S [r(x, P, y) + (Tf)(y)]P(dy)
 is undefined for some (x, P) e A.

 PROOF. Let S be the closed unit interval, and let r 0_ . Let p project the

 closed unit square onto the x-axis. Let 0 be a one-to-one bimeasurable map of
 the open unit square onto the open unit interval. Let g = p o 0-1, a measurable
 map of the open unit interval onto itself. Let B be the graph of g, visualized as

 a function from the y-axis to the x-axis:

 B = {(x,y): 0 < xy < 1, and x = g(y)}

 Let A consist of the pairs (x, 6z) with (x, z) e B, together with the pairs (0,
 Lebesgue) and (1, oh).

 Let E be a complementary analytic subset of the open unit square, with pE

 not Lebesgue measurable (9). Let C = 0(E), a complementary analytic subset

 of the open unit interval. Letf = lc. Thenfis universally measurable. Clearly,
 (Tf)(0) = Lebesgue (C) and (Tf)(l) = f(l). Suppose 0 < x < 1. Then

 (Tf)(x) = SUpPeA, 5 f(y)P(dy) = SUPZEB, 1(Z) -

 So (Tf)(x) = 1 if there is a z e C with (x, z) e B, that is, with x = g(z) = p(0-1(z)):
 otherwise, (Tf)(x) = 0. In other terms, (Tf)(x) = 1 iff x e p(O-/(C)) = pE. That
 is, Tf = 1PE. So (49) is undefined at x = 0 and P = Lebesgue. D'
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