

Infinite Games with Imperfect Information

Author(s): Michael Orkin

Source: *Transactions of the American Mathematical Society*, Vol. 171 (Sep., 1972), pp. 501-507

Published by: American Mathematical Society

Stable URL: <http://www.jstor.org/stable/1996393>

Accessed: 16-02-2018 17:34 UTC

REFERENCES

Linked references are available on JSTOR for this article:

http://www.jstor.org/stable/1996393?seq=1&cid=pdf-reference#references_tab_contents

You may need to log in to JSTOR to access the linked references.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

<http://about.jstor.org/terms>

JSTOR

American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to *Transactions of the American Mathematical Society*

INFINITE GAMES WITH IMPERFECT INFORMATION⁽¹⁾

BY

MICHAEL ORKIN

ABSTRACT. We consider an infinite, two person zero sum game played as follows: On the n th move, players A, B select privately from fixed finite sets, A_n, B_n , the result of their selections being made known before the next selection is made. After an infinite number of selections, a point in the associated sequence space, Ω , is produced upon which B pays A an amount determined by a payoff function defined on Ω . In this paper we extend a result of Blackwell and show that if the payoff function is the indicator function of a set in the Boolean algebra generated by the G_δ 's (with respect to a natural topology on Ω) then the game in question has a value.

1. Introduction. Infinite games with imperfect information have been studied by several writers, notably Blackwell [1], [2], and Shapley [5]. Before proceeding with the main result of this paper, we will discuss the structure and admissible strategies of these games.

Let $\{A_n\}, \{B_n\}$ be sequences of nonempty finite sets. Let $Z_n = A_n \times B_n$, and let Ω be the space $\prod_{n=1}^{\infty} Z_n$ of infinite sequences $\omega = (z_1, z_2, \dots)$ where $z_n \in Z_n$. Let Ω be topologized as follows (for a related discussion, see [3]):

Suppose X is the set of all positions, i.e. finite sequences, $x = (z_1, z_2, \dots, z_n)$, $z_i \in Z_i$, $n = 0, 1, 2, \dots$. Then if $\omega \in \Omega$, $x \in X$, we define x to be a neighborhood of ω if ω passes through x . If the positions are thus considered as sets, they form a base for a Hausdorff, disconnected topology for Ω in which Ω is compact.

In this topology any open set is defined by a subset of X (a countable collection of positions). Any set defined by a finite collection of positions is both open and closed. It is shown by Wolfe [7] that if G is a G_δ then there exists a collection of positions T such that $G = \{\omega \in \Omega \mid \omega \text{ passes through infinitely many members of } T\}$, which we will henceforth denote by $G = T$ i.o.

Now, suppose f is a bounded Baire function on Ω . Then we define a zero sum two person game G_f , played as follows:

Received by the editors July 1, 1971.

AMS 1970 subject classifications. Primary 90D05, 90D15; Secondary 28A05, 60G45.

Key words and phrases. Infinite games, imperfect information, two person zero sum game, lower value, payoff function, Baire function.

(¹) This paper is part of the author's doctoral dissertation at the University of California, Berkeley, and was prepared with the partial support of the U. S. Air Force, Grant AF-AFOSR-1312-67, and the U. S. Office of Naval Research, Contract N00014-66-C0036.

First, player A selects $a_1 \in A_1$ while player B simultaneously selects $b_1 \in B_1$. The result, $z_1 = (a_1, b_1) \in Z_1$, is announced to both players, upon which A selects $a_2 \in A_2$ while B selects $b_2 \in B_2$, etc. The result of this infinite sequence of moves is a point $\omega = (z_1, z_2, \dots) \in \Omega$ and B pays A the amount $f(\omega)$.

A strategy α (β) for A (B) gives for each position x (of length n , say) a probability distribution on A_{n+1} (B_{n+1}) with the stipulation that if the current position is x , A (B) will make his next choice according to α (β). A pair of strategies (α, β) defines a probability distribution $P_{\alpha\beta}$ on Ω and, hence, an expected payoff to A in G_f when A uses α and B uses β :

$$E(f, \alpha, \beta) = \int f(\omega) dP_{\alpha\beta}(\omega).$$

The lower and upper values of G_f are, respectively,

$$L(G_f) = \sup_{\alpha} \inf_{\beta} E(f, \alpha, \beta), \quad U(G_f) = \inf_{\beta} \sup_{\alpha} E(f, \alpha, \beta).$$

It is always true that $L(G_f) \leq U(G_f)$; if $L(G_f) = U(G_f)$, this common value is called the value of G_f and will be denoted by $\text{Val}(G_f)$.

2. Main Result. We will show that if $f = I_G$, where $G \in B(G_\delta)$ (the Boolean algebra generated by the G_δ 's), then G_f has a value. In [1], Blackwell proved this result if G is a G_δ . Before proving this result, we give two examples of games of this type and mention a related open question.

Example 1. On each move, players A and B choose, simultaneously, a 0 or 1. The winning set S of the form $G_\delta \cup F_\sigma$, is defined as follows:

$S = G \cup F$ where $G = \{\omega \mid \omega_n = (0, 0) \text{ for infinitely many } n \text{ and } \omega_n = (1, 1) \text{ for infinitely many } n\}$,

$F = \{\omega \mid \omega_n = (0, 0) \text{ for at most finitely many } n \text{ and } \omega_n = (1, 1) \text{ for at most finitely many } n\}$.

The value of this game is 1, which can be achieved by A with a nonrandom strategy; he starts by saying 1 on each move. If B says 0 on every move, F is hit. If B ever says 1, A then starts saying 0's. If B then says 1's forever, F is still hit. If B ever says 0 again, A switches back to 1's, etc. If there are an infinite number of changes G is hit, otherwise F is hit.

Example 2. The winning set is a G_δ . On each move, the players choose simultaneously a 0 or 1. If player A ever says 1, the game is over on that move; if B also said 1, A wins; if B said 0, B wins. If A never says 1, the game continues and A wins if there are infinitely many moves with outcome (0, 0). (In other words, A tries to predict B 's choice. See [2] for a related game.)

The value of this game is 1, but there are no optimal strategies for A . Here is a strategy for A , due to David Blackwell, which, for fixed N , guarantees A at least $1 - 1/N$:

Define $N_j = 2^j N$, $j = 1, 2, \dots$, so that

$$\sum_{j=1}^{\infty} \frac{1}{N_j} = \frac{1}{N}.$$

Player A divides the trials into successive blocks of lengths N_1, N_2, \dots . If he has not yet stopped the game, i.e. played 1 when block j is reached, he selects X_j at random from $\{1, 2, \dots, N_j\}$. He then plays 1 at the X_j th trial of block j if B 's previous $X_j - 1$ plays in the block are all 1's; otherwise, he plays 0 throughout the block. Then, clearly,

$$P(A \text{ loses on } j\text{th block} \mid j\text{th block is reached}) \leq 1/N_j.$$

Thus, $P(A \text{ loses on } j\text{th block}) \leq 1/N_j$, and $P(A \text{ loses by failing to match}) \leq \sum (1/N_j) = 1/N$. However, by the nature of this strategy, if the game goes on forever, A will win, since there would then be (0, 0)'s in each block. \square

The following question remains unsolved in general: Do games with payoffs which are simple functions based on sets in $B(G_\delta)$ have a value, i.e. games with payoff of the form $f = c_1 I_{B_1} + \dots + c_n I_{B_n}$, where $B_i \in B(G_\delta)$, c_i are constants. In fact, we do not even know whether or not the much simpler games with payoffs of the form $I_{Q_1} - I_{Q_2}$ have a value, where Q_1, Q_2 are open and disjoint. In another paper we will discuss some special cases of these kinds of games and show that they have a value.

We are now ready to prove the main result.

Lemma 1. *Consider the class of sets of the form*

$$G_1 \cup F_1 \cup (G_2 \cap F_2) \cup \dots \cup (G_n \cap F_n)$$

where $G_i \in G_\delta$, $F_i \in F_\sigma$. This class of sets is precisely $B(G_\delta)$.

Proof. By the fact that a finite union of G_δ 's is a G_δ , a finite intersection of F_σ 's is an F_σ , and by the standard results for generating Boolean algebras (e.g. see [4, Proposition I. 2.2, p. 7]) it is easily shown that every set in $B(G_\delta)$ is of the form $\bigcup_{i=1}^n (G_i \cap F_i)$, $G_i \in G_\delta$, $F_i \in F_\sigma$. Thus, every set in $B(G_\delta)$ is of the form

$$\begin{aligned} \left(\bigcup_{i=1}^n (G_i \cap F_i) \right)^c &= \bigcap_{i=1}^n (G_i^c \cup F_i^c) \\ &= \left(\bigcap_{i=1}^n F_i^c \right) \cup \left(\bigcap_{i=1}^n G_i^c \right) \cup \left(\bigcup_{i=1}^n \left(F_i^c \cap \left(\bigcap_{j \neq i} G_j^c \right) \right) \right) \end{aligned}$$

which, again using the fact about finite unions (intersections) of G_δ 's (F_σ 's) is easily seen to be of the required form.

Lemma 2. Consider the class of sets $\mathcal{C} = \bigcup_{n=1}^{\infty} \mathcal{C}_n$ generated in the following way: $\mathcal{C}_1 = G_\delta$; if $n > 1$, \mathcal{C}_n = sets of the form $G_\delta \cup A_{n-1}$, where A_n = complements of sets in \mathcal{C}_n (e.g. $\mathcal{C}_2 = G_\delta \cup F_\sigma$). We claim $\mathcal{C} = B(G_\delta)$.

Proof. By using De Morgan's law and the fact that $G_\delta \cup G_\delta = G_\delta$, $F_\sigma \cap F_\sigma = F_\sigma$, it is easily seen that \mathcal{C}_4 = sets of the form $G_1 \cup F_1 \cup (F_2 \cap G_2)$, \mathcal{C}_{2n} = sets of the form $G_1 \cup F_1 \cup (\bigcup_{i=2}^n (F_i \cap G_i))$ which by Lemma 1 gives the sets in $B(G_\delta)$. \square

The next lemma is the first step in an induction which will yield the main result.

Lemma 3. Let ϕ be upper semicontinuous, $0 \leq \phi \leq 1$. Suppose $G \in G_\delta$. Then the game with payoff $\bar{\phi} = \min(\phi, I_G)$ has a value.

Proof. The first part of this proof and A 's method of play is the same as in [1]. Suppose $G = T$ i.o., where T is a collection of positions. For any position x , let G_x^* be the game, starting from x with payoff $U_t(G_{\bar{\phi}})$ if T is hit for the first time after x at t , with payoff 0 if T is never hit after x , where $U_t(G_{\bar{\phi}})$ is the upper value of the original game starting from t . This payoff is lower semicontinuous, so, by [6], G_x^* has a value and player B has an optimal strategy. We claim $\text{Val}(G_x^*) \geq U_x(G_{\bar{\phi}})$; for fixed $\epsilon > 0$, we present a strategy for B starting from x such that no matter what A does, $E_x(\bar{\phi}) \leq \text{Val}(G_x^*) + \epsilon$:

Let B , starting from x , play optimally in G_x^* until T is hit for the first time after x , say at t . Then B plays, starting from t , to keep $E_t(\bar{\phi}) \leq U_t(G_{\bar{\phi}}) + \epsilon$, so

$$E_x(\bar{\phi}) = \sum_{t \in T} p(t) E_t(\bar{\phi}) \leq \sum_{t \in T} p(t) U_t(G_{\bar{\phi}}) + \epsilon \leq \text{Val}(G_x^*) + \epsilon.$$

Now, for $\epsilon > 0$, we describe a strategy for A such that no matter what B does, $E(\bar{\phi}) \geq U(G_{\bar{\phi}}) - \epsilon$, and the lemma will be proved. First, A plays $\epsilon/4$ optimally in G_e^* (e denotes the empty position). If T is hit after e , say at t_1 , A then plays $\epsilon/8$ optimally in $G_{t_1}^*$, etc. (If T is hit for the n th time at t_n , A then plays $\epsilon/2^{n+1}$ optimally in $G_{t_n}^*$.) Let the resulting sequence of moves be denoted by $z = (z_1, z_2, \dots)$.

We define a sequence of random variables: $X_0 = U(G_{\bar{\phi}})$; for $k \geq 1$, $X_k = U_{t_k}(G_{\bar{\phi}})$ if T was hit for the k th time at t_k , $X_k = 0$ if T was hit less than k times. Thus, we have

$$(1) \quad E(X_k | X_{k-1}, \dots, X_0) \geq X_{k-1} - \epsilon/2^{k+1}.$$

This is obvious if $X_{k-1} = 0$. If not, T was hit for the $(k-1)$ st time at t_{k-1} , say, after which A played $\epsilon/2^{k+1}$ optimally in $G_{t_k}^*$ to get at least $\text{Val}(G_{t_k}^*) - \epsilon/2^{k+1} \geq X_{k-1} - \epsilon/2^{k+1}$. Since the payoff in $G_{t_k}^*$ is X_k , (1) follows. Taking expectations on both sides, we get

$$(2) \quad E(X_k) \geq E(X_{k-1}) - \epsilon/2^{k+1} \Rightarrow E(X_k) \geq U(G_{\bar{\phi}}) - \epsilon/2.$$

Now, by the definition of upper semicontinuity and the nature of the topology on Ω , for every point $z = (z_1, z_2, \dots)$ and every $\epsilon > 0$, there exists k such that any point $\omega = (\omega_1, \omega_2, \dots)$ with $\omega_i = z_i$ for $i \leq k$ has the property

$$\begin{aligned} \phi(\omega) \leq \phi(z) + \epsilon/2 &\Rightarrow \text{if } z \in G, \bar{\phi}(\omega) \leq \bar{\phi}(z) + \epsilon/2 \\ &\Rightarrow (\text{still if } z \in G) U(z_1, \dots, z_k)(G_{\bar{\phi}}) \leq \bar{\phi}(z) + \epsilon/2 \\ &\Rightarrow (\text{for any } z) \limsup_n X_n \leq \bar{\phi}(z) + \epsilon/2. \end{aligned}$$

The last implication is obvious if $z \in G$. If $z \notin G$, T is only hit say N times, so for $n \geq N$, $X_n = 0$. Using Fatou's lemma on the last inequality, we get

$$E(\bar{\phi}) \geq \limsup_n E(X_n) - \epsilon/2 \geq U(G_{\bar{\phi}}) - \epsilon. \quad \square$$

Theorem 1. Suppose $H \in \mathcal{C}_n$, i.e. $H = G \cup S$, $G \in G_\delta$, $S^c \in \mathcal{C}_{n-1}$. Suppose, also, that ϕ is upper semicontinuous with the property $0 \leq \phi \leq 1$, $\phi = 1$ on S . Then the game with payoff $\bar{\phi} = \min(\phi, I_H)$ has a value.

Proof. Lemma 3 shows that the theorem is true for sets in \mathcal{C}_1 . Suppose the theorem is true for sets in \mathcal{C}_{n-1} . Let $H \in \mathcal{C}_n$, $H = G \cup S$, where $G \in G_\delta$, $S^c \in \mathcal{C}_{n-1}$ (assume, without loss of generality, that $G \neq \emptyset$). Suppose $G = T$ i.o. for some collection of positions T . For any position x , let H_x^* be the game starting at x which continues until the first time T is hit after x , say at t , with A getting $U_t(G_{\bar{\phi}})$ when this happens. Otherwise, the game continues and A gets I_S . We claim H_x^* has a value (the payoff in H_x^* may be neither upper nor lower semicontinuous).

Observe that if C is closed, $J \in G_\delta \Rightarrow C \cap J \in G_\delta$; $J \in F_\sigma \Rightarrow C \cap J \in F_\sigma$; therefore $J \in \mathcal{C}_n \Rightarrow C \cap J \in \mathcal{C}_n$. Let \mathcal{O}_x be the open set defined by the collection of positions passing through x which later hit T . Let $C_x = \mathcal{O}_x^c$. Then $S^c \cap C_x \in \mathcal{C}_{n-1}$ since S^c is. Define $\phi^* = 1 - f$, where f is the payoff in H_x^* . Also, define the upper semicontinuous function g : $g = \phi^*$ on \mathcal{O}_x , $g \equiv 1$ elsewhere. Thus g satisfies the conditions of the theorem and $\phi^* = \min(g, I_{C_x \cap S^c})$, so by the induction hypothesis the game starting at x with payoff ϕ^* has a value. Therefore, H_x^* has a value since its payoff is $f = 1 - \phi^*$ (the method of proof in Lemma 3 allows negation of the payoff since the same proof can be used by reversing the role of the players; it clearly allows the addition of a constant to the payoff).

By reasoning similar to that in Lemma 3, it can be shown that $\text{Val}(H_x^*) \geq U_x(G_{\bar{\phi}})$. Now, for fixed $\epsilon > 0$, we will exhibit a strategy for player A which guarantees that $E(\bar{\phi}) \geq U(G_{\bar{\phi}}) - \epsilon$.

As in Lemma 3, A starts out playing $\epsilon/4$ optimally in H_e^* , etc. (If T is hit for the n th time at t_n , A then plays $\epsilon/2^{n+1}$ optimally in $H_{t_n}^*$.) Let the resulting play be $z = (z_1, z_2, \dots)$.

Define the random variables: $X_0 = U(G_{\bar{\phi}})$; for $k \geq 1$, $X_k = U_{t_k}(G_{\bar{\phi}})$ if T is hit for the k th time at t_k , $X_k = I_S$ if T is hit less than k times. By reasoning similar to that in Lemma 3, we get

$$(3) \quad E(X_k) \geq U(G_{\bar{\phi}}) - \epsilon/2.$$

Again, by the definition of upper semicontinuity, there exists $k_{(\epsilon, z)}$ such that any point $\omega = (\omega_1, \omega_2, \dots)$ agreeing with z up to $z_{k_{(\epsilon, z)}}$ has the property

$$\begin{aligned} \phi(\omega) \leq \phi(z) + \epsilon/2 &\Rightarrow \text{if } z \in H, \bar{\phi}(\omega) \leq \bar{\phi}(z) + \epsilon/2 \\ &\Rightarrow \text{if } z \in H, U_{(z_1, \dots, z_k)}(G_{\bar{\phi}}) \leq \bar{\phi}(z) + \epsilon/2 \\ &\Rightarrow \text{for any } z, \limsup_n X_n \leq \bar{\phi}(z) + \epsilon/2. \end{aligned}$$

Again, the last step is obvious if $z \in G$. If not, $S \cap G^c$ is hit and $\bar{\phi} = 1$ or $S^c \cap G^c$ is hit and $\limsup_n X_n = 0$. Thus, by Fatou, $E(\bar{\phi}) \geq \limsup_n E(X_n) \geq U(G_{\bar{\phi}}) - \epsilon$. \square

Corollary 1. *If $H \in B(G_\delta)$, the game with payoff I_H has a value.*

Proof. Let $\phi = 1$ and use the theorem and Lemma 2.

Corollary 2. *G_f has a value if f satisfies the following conditions:*

(a) *There is a collection T of nonoverlapping positions (nonoverlapping means $x \in T \Rightarrow x$ is not an initial segment of any other member of T) such that if $x \in T$ then f is constant on all sequences passing through x .*

(b) *$0 \leq f \leq 1$ on T .*

(c) *There exists $H \in B(G_\delta)$ such that $f = I_H$ if T is never hit.*

Proof. The function $\phi = 1$ off T , $\phi = f$ otherwise, is upper semicontinuous, $\phi = 1$ on H , and $f = \min(\phi, I_H)$ so the theorem applies. \square

Acknowledgement. I wish to express my appreciation to Professor David Blackwell for suggesting the problem herein and for his encouragement and advice during the course of my research.

REFERENCES

1. D. Blackwell, *Infinite G_δ -games with imperfect information*, *Zastos. Mat.* 10 (1969), 99–101. MR 39 #5158.

2. D. Blackwell and T. S. Ferguson, *The big match*, Ann. Math. Statist. 39 (1968), 159–163. MR 36 #6211.
3. D. Gale and F. M. Stewart, *Infinite games with perfect information*, Contributions to the Theory of Games, vol. 2, Ann. of Math. Studies, no. 28, Princeton Univ. Press, Princeton, N. J., 1953, pp. 245–266. MR 14, 999.
4. J. Neveu, *Bases mathématiques du calcul des probabilités*, Masson, Paris, 1964; English transl., Holden-Day, San Francisco, Calif., 1965. MR 33 #6659; #6660.
5. L. S. Shapley, *Stochastic games*, Proc. Nat. Acad. Sci. U. S. A. 39 (1953), 1095–1100. MR 15, 887.
6. M. Sion, *On general minimax theorems*, Pacific J. Math. 8 (1958), 171–176. MR 20 #3506.
7. P. Wolfe, *The strict determinateness of certain infinite games*, Pacific J. Math. 5 (1955), 841–847. MR 17, 506.

DEPARTMENT OF STATISTICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA
94720

Current address: Department of Mathematics, Case Western Reserve University, Cleveland, Ohio 44106