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 TRANSACTIONS OF THE
 AMERICAN MATHEMATICAL SOCIETY
 Volume 171, September 1972

 INFINITE GAMES WITH IMPERFECT INFORMATION(1)

 BY

 MICHAEL ORKIN

 ABSTRACT. We consider an infinite, two person zero sum game played as fol-
 lows: On the nth move, players A, B select privately from fixed finite sets, A,
 Bn, the result of their selections being made known before the next selection is
 made. After an infinite number of selections, a point in the associated sequence
 space, Q, is produced upon which B pays A an amount determined by a payoff
 function defined on Q. In this paper we extend a result of Blackwell and show
 that if the payoff function is the indicator function of a set in the Boolean alge-
 bra generated by the G 's (with respect to a natural topology on Q) then the
 game in question has a value.

 1. Introduction. Infinite games with imperfect information have been studied

 by several writers, notably Blackwell [1], [2], and Shapley [5]. Before proceeding
 with the main result of this paper, we will discuss the structure and admissible
 strategies of these games.

 Let 1A n, IBnl be sequences of nonempty finite sets. Let Z = An x Bn, and
 let Q be the space Hll 1 Zn of infinite sequences o = (z1, z2 ) where Z 6
 Zn. Let Q be topologized as follows (for a related discussion, see [3]):

 Suppose X is the set of all positions, i.e. finite sequences, x =

 (z 1 Z2 ... 7 Zn) zi E Z. n = 0, 1,2 2, Then if co e Q, x E X, we define x to
 be a neighborhood of o if o passes through x. If the positions are thus considered
 as sets, they form a base for a Hausdorff, disconnected topology for Q in which Q
 is compact.

 In this topology any open set is defined by a subset of X (a countable col-

 lection of positions). Any set defined by a finite collection of positions is both

 open and closed. It is shown by Wolfe [7] that if G is a G 8 then there exists a
 collection of positions T such that G = 6CL e Q I Co passes through infinitely many
 members of T}, which we will henceforth denote by G = T i.o.

 Now, suppose f is a bounded Baire function on Q. Then we define a zero sum

 two person game Gf, played as follows:
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 First, player A selects a 1 E A 1 while player B simultaneously selects b 1
 EB B1 The result, z 1 = (a 1 b 1) E Zie is announced to both players, upon which A
 selects a2 e A2 while B selects b2 e B2, etc. The result of this infinite sequence

 of moves is a point o = (zi , z2 9 **) e Q and B pays A the amount f((o).
 A strategy a (13) for A (B) gives for each position x (of length n, say) a prob-

 ability distribution on An + I (Bn + 1) with the stipulation that if the current posi-
 tion is x, A (B) will make his next choice according to a (3). A pair of strategies

 (a, 3) defines a probability distribution Pa,8 on Q and, hence, an expected payoff
 to A in G when A uses a and B uses /3:

 E(f, a, /3) = f(od)dPi (o).

 The lower and upper values of Gf are, respectively,

 L(Gf) sup inf E(/, a, ), U(G)- inf sup E(/, a,

 It is always true that L(Gf) < U(Gf); if L(G) = U(Gf), this common value is called

 the value of Gf and will be denoted by Val (Gd).

 2. Main Result. We will show that if f = I G where G e B(G8) (the Boolean

 algebra generated by the G8's), then Gf has a value. In [1i, Blackwell proved this

 result if G is a G 8. Before proving this result, we give two examples of games of
 this type and mention a related open question.

 Example 1. On each move, players A and B choose, simultaneously, a 0 or

 1. The winning set S of the form G U F., is defined as follows:
 S = G U F where G = I o4n = (0 0) for infinitely many n and o= (1, 1) for

 infinitely many n},

 F = col co = (0, 0) for at most finitely many n and On = (1, 1) for at most
 finitely many n}.

 The value of this game is 1, which can be achieved by A with a nonrandom

 strategy; he starts by saying 1 on each move. If B says 0 on every move, F is

 hit. If B ever says 1, A then starts saying 0's. If B then says l's forever, F is

 still hit. If B ever says 0 again, A switches back to l's, etc. If there are an in-

 finite number of changes G is hit, otherwise F is hit.

 Example 2. The winning set is a G ,. On each move, the players choose simul-

 taneously a 0 or 1. If player A ever says 1, the game is over on that move; if B

 also said 1, A wins; if B said 0Q B wins. If A never says 1, the game continues
 and A wins if there are infinitely many moves with outcome (0, 0). (In other words,

 A tries to predict B's choice. See [2] for a related game.)

 The value of this game is 1, but there are no optimal strategies for A. Here

 is a strategy for A, due to David Blackwell, which, for fixed N, guarantees A at
 least 1 - 1/N:
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 Define N = 2'N j= 1, 2,.., so that

 00

 N N
 I

 Player A divides the trials into successive blocks of lengths NJ, N2,.... If he
 has not yet stopped the game, i.e. played 1 when block j is reached, he selects

 X. at random from Ii, 2,.*., Ni. He then plays 1 at the X.th trial of block j if

 B's previous X -1 plays in the block are all l's; otherwise, he plays 0 through-

 out the block. Then, clearly,

 P (A loses on jth block I jth block is reached) < I/NI.

 Thus, P(A loses on fth block) < 1/NP, and P(A loses by failing to match) <
 E (1/Nj) = 1/N. However, by the nature of this strategy, if the game goes on forever,
 A will win, since there would then be (0, 0)'s in each block. D

 The following question remains unsolved in general: Do games with payoffs

 which are simple functions based on sets in B(G8) have a value, i.e. games with
 payoff of the form f= C1IB ' v CnIBn where Bi E B(G3), ci are constants. In
 fact, we do not even know whether or not the much simpler games with payoffs of

 the form IQ -IQ2 have a value, where Ql, Q2 are open and disjoint. In another
 paper we will discuss some special cases of these kinds of games and show that

 they have a value.

 We are now ready to prove the main result.

 Lemma 1. Consider the class of sets of the form

 G1 U F1 U (G2 n F2) U * * * u (Gn n Fn)

 where G. G G , Fi E F. This class of sets is precisely B(G).

 Proof. By the fact that a finite union of G 8's is a G ,, a finite intersection of
 F 's is an F0, and by the standard results for generating Boolean algebras (e.g.

 see [4, Proposition I. 2.2, p. 71) it is easily shown that every set in B(G ,) is of

 the form U7-1 (Gi fl Ft), G. E G, F. c F. Thus, every set in B(G8) is of the
 form

 n c n

 (= n(Gc U F) i-l i=l i
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 which, again using the fact about finite unions (intersections) of G8's (F(J's) is
 easily seen to be of the required form.

 Lemma 2. Consider the c lass of sets = U 1 En generated in the following
 way: e = G 8; if n > 1, (n = sets of the form G 8 U An -1 where An = complements
 of sets in ( (e.g. e2 = G , U F,J). We claim e = B(G ,).

 Proof. By using De Morgan's law and the fact that G , U G ; = G ,, F,J n F,J -

 F,J, it is easily seen that e4 = sets of the form G, U F U (F2 1 G 2) 2 = sets
 of the form G U F U (Un (F n Gi)) which by Lemma 1 gives the sets in
 B (G ,). O-

 The next lemma is the first step in an induction which will yield the main

 result.

 Lemma 3. Let b be upper semicontinuous, 0 < (b < 1. Suppose G e G 8. Then

 the game with payoff b = min (?, IG) has a value.

 Proof. The first part of this proof and A's method of play is the same as in

 [1]. Suppose G = T i.o., where T is a collection of positions. For any position x,

 let G* be the game, starting from x with payoff U (G-) if T is hit for the first

 time after x at t, with payoff 0 if T is never hit after x, where U (G-) is the
 upper value of the original game starting from t. This payoff is lower semicontin-

 uous, so, by [6], G* has a value and player B has an optimal strategy. We claim

 Val (G* ) > U (G?); for fixed E > O, we present a strategy for B starting from x

 such that no matter what A does, E x(b) < Val (G* ) + E:
 Let B, starting from x, play optimally in G* until T is hit for the first time

 x

 after x, say at t. Then B plays, starting from t, to keep Et(+) < U t(G) + E, so

 Ex (+) = ,: p (t) Et (+) < E: p (t) Ut (G(T) + c < Val (Gx ) + e.
 tET tET

 Now, for E > 0, we describe a strategy for A such that no matter what B does,

 E(+) > U(G-) - E, and the lemma will be proved. First, A plays E/4 optimally in

 G* (e denotes the empty position). If T is hit after e, say at tp, A then plays
 E/8 optimally in G* . etc. (If T is hit for the nth time at t , A then plays

 2n + 1 optimally in G* .) Let the resulting sequence of moves be denoted by z =
 tn

 (1' 2' )n

 We define a sequence of random variables: X = U(G-) for k > 1, X =

 Ut (G-) if T was hit for the kth time at tk, Xk = 0 if T was hit less than k

 times. Thus, we have

 (1) E(XkI Xk1 ... * XO) > Xkl/2k
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 This is obvious if Xk 1 = 0. If not, T was hit for the (k - l)st time at tk 1 say,

 after which A played l/2k+ 1 optimally in G*k to get at least Val (G* ) - E/2k+ 1 tk ~~~~~~tk
 > Xk - E/2k + 1. Since the payoff in G* is Xk, (1) follows. Taking expectations k-1 ~~~~~~~~~tk
 on both sides, we get

 (2) E(X)?Xk 4'/2 +1 > E(Xd) > U(GT)-g/2.
 Now, by the definition of upper semicontinuity and the nature of the topology

 on Q, for every point z (z1, z29 ... ) and every E> 0, there exists k such that

 any point w = J2' ** ) with co, = Zi for i < k has the property

 (<o) ?(z) + E/2 => if z E G, (co) < +b(z) + E/2

 + (still if z C G) U(z1l, . . .Zk) (GT) < +(z) + E/2

 + (for any z) lim sup Xn < +(z) + E/2.
 n

 The last implication is obvious if z C G. If z i G, T is only hit say N times,

 so for n >N Xn = 0. Using Fatou's lemma on the last inequality, we get

 E (G) > lim sup E (Xn) - E/2 > U(G7) - c. D
 n

 Theorem 1. Suppose H eC n, i.e. H = G U S, G E G , Sc nEC 1 Suppose,
 also, that b is upper semicontinuous with the property 0 < K < 1, Ib = 1 on S.

 Then the game with payoff ?b = min (sb IH) has a value.

 Proof. Lemma 3 shows that the theorem is true for sets in C1. Suppose the

 theorem is true for sets in Cn 1 Let H e Cn H=G U S, where G eG, 5 CE
 Cn 1 (assume, without loss of generality, that G 0). Suppose G = T i.o. for
 some collection of positions T. For any position x, let H* be the game starting

 at x which continues until the first time T is hit after x, say at t, with A get-

 ting Ut(G ) when this happens. Otherwise, the game continues and A gets Is,
 We claim H* has a value (the payoff in H* may be neither upper nor lower semi- x x
 continuous).

 Observe that if C is closed, J e G C r J e G; J e Fz > C n J e F;

 therefore j e Cn C C nf JE Cn* Let Ox be the open set defined by the collection
 of positions passing through x which later hit T. Let C, = Oc. Then SC r) Cx e x

 Cn- 1 since SC is. Define 0* = 1-f, where f is the payoff in H*. Also, define
 the upper semicontinuous function g: g= on g-- 1 elsewhere. Thus g

 satisfies the conditions of the theorem and 5b*= min (g, ICnsc), so by the induc- cxs
 tion hypothesis the game starting at x with payoff 0b* has a value. Therefore, H*
 has a value since its payoff is / = 1-S* (the method of proof in Lemma 3 allows
 negation of the payoff since the same proof can be used by reversing the role of

 the players; it clearly allows the addition of a constant to the payoff).
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 By reasoning similar to that in Lemma 3, it can be shown that Val (H* ) >

 UX(G,). Now, for fixed c > 0, we will exhibit a strategy for player A which guaran-
 tees that E(G) > U(G-)- -.

 As in Lemma 3, A starts out playing c/4 optimally in H*, etc. (If T is hit

 for the nth time at t,, A then plays /2n +1 optimally in Ht .) Let the resulting
 n) t~~~~~~~~~n

 play be Z = (z z 2 )
 Define the random variables: XO U(G?) for k > 1, X = U (G ) if T is

 0 ~~~~k tk ~
 hit for the kth time at t., Xk = is if T is hit less than k times. By reasoning
 similar to that in Lemma 3, we get

 (3) E (Xk) > U (G?) - c/2.

 Again, by the definition of upper semicontinuity, there exists k( Z) such that any
 point = (a) a) * * ) agreeing with z up to zk() has the property

 k(o) < K (z) + c/2 =if z e H, (Go) < 0(z) + c/2

 if z C H, (ZU1(... ,Zk)(G-) < (z) + c12

 = for any z, lim sup Xn < +(z) + </2.
 n

 Again, the last step is obvious if z e G. If not, S n GC is hit and b - 1 or SC rl

 Gc is hit and lim supn Xn 0 O. Thus, by Fatou, E(+) > lim supn E(Xn) > U(G-) -
 c. a

 Corollary 1. If H c B(G 8), the game with payoff IH has a value.

 Proof. Let ? = 1 and use the theorem and Lemma 2.

 Corollary 2. Gfhas a value if f satisfies the following conditions:
 (a) There is a collection T of nonoverlapping positions (nonoverlapping means

 x G T =# x is not an initial segment of any other member of T) such that if x G T
 then f is constant on all sequences passing through x.

 (b) O < f < 1 on T.

 (c) There exists H C B(G) such that f = IH if T is never hit.

 Proof. The function ?b = I off T, o = f otherwise, is upper semicontinuous,

 95 = 1 on H, and f = min ( IH) so the theorem applies. El
 Acknowledgement. I wish to express my appreciation to Professor David Black-

 well for suggesting the problem herein and for his encouragement and advice during

 the course of my research.
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