@DAMS

A\l}m( AN MATHEMATICAL SOCIETY
WWW.ams. I;Il'g

Infinite Games with Imperfect Information

Author(s): Michael Orkin

Source: Transactions of the American Mathematical Society, Vol. 171 (Sep., 1972), pp. 501-
507

Published by: American Mathematical Society

Stable URL: http://www.jstor.org/stable/1996393

Accessed: 16-02-2018 17:34 UTC

REFERENCES

Linked references are available on JSTOR for this article:
http://www jstor.org/stable/19963937seq=1&cid=pdf-reference#references_tab_contents
You may need to log in to JSTOR to access the linked references.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide
range of content in a trusted digital archive. We use information technology and tools to increase productivity and

facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

http://about.jstor.org/terms

American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend
access to Transactions of the American Mathematical Society

JSTOR

This content downloaded from 134.154.190.2 on Fri, 16 Feb 2018 17:34:51 UTC
All use subject to http://about.jstor.org/terms



TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 171, September 1972

INFINITE GAMES WITH IMPERFECT INFORMATION(!)
BY

MICHAEL ORKIN

ABSTRACT. We consider an infinite, two person zero sum game played as fol-
lows: On the nth move, players A, B select privately from fixed finite sets, A
B_, the result of their selections bemg made known before the next selection 1s
made. After an infinite number of selections, a point in the associated sequence
space, @, is produced upon which B pays 4 an amount determined by a payoff
function defined on Q. In this paper we extend a result of Blackwell and show
that if the payoff function is the indicator function of a set in the Boolean alge-
bra generated by the 68’5 (with respect to a natural topology on Q) then the
game in question has a value.

1. Introduction. Infinite games with imperfect information have been studied
by several writers, notably Blackwell [1], [2], and Shapley [S]. Before proceeding
with the main result of this paper, we will discuss the structure and admissible
strategies of these games.

Let {An}, {Bn§ be sequences of nonempty finite sets. Let zZ = An x B, ,and

let Q be the space II”_| Z_ of infinite sequences w = (=, Zy,+++) where z, €

Z . Let  be topologized :s follows (for a related discussion, see [3]):

Suppose X is the set of all positions, i.e. finite sequences, x =
(zl, zz,n-,zn), z2,€Z,,n=0,1,2,--.. Thenif w €, x € X, we define x to
be a neighborhood of @ if w passes through x. If the positions are thus considered
as sets, they form a base for a Hausdorff, disconnected topology for @ in which

is compact,.

In this topology any open set is defined by a subset of X (a countable col-
lection of positions). Any set defined by a finite collection of positions is both
open and closed. It is shown by Wolfe [7] that if G is a G 5 then there exists a
collection of positions T such that G ={w € Q] w passes through infinitely many
members of T}, which we will henceforth denote by G=T i.o.

Now, suppose [ is a bounded Baire function on . Then we define a zero sum
two person game G/, played as follows:
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502 MICHAEL ORKIN [September

First, player A selects @, € A, while player B simultaneously selects b,

1
€ B,. The result, z, = (al, bl) € Z, is announced to both players, upon which A

selects a, € A2 while B selects b2 € Bz’ etc. The result of this infinite sequence

2
of moves is a point ® = (zl, Zyye .)eQ and B pays A the amount /().
A strategy a (B) for A (B) gives for each position x (of length 7, say) a prob-

n+l (Bn +1
tion is %, A (B) will make his next choice according to a (8). A pair of strategies

ability distribution on .A ) with the stipulation that if the current posi-
(a, B) defines a probability distribution P, on ) and, hence, an expected payoff
to A in G/ when A uses a and B uses f3:

E(fy o B) = [1(@)dP, 50
The lower and upper values of G/ are, respectively,

L(G) = sup i%f E(f,a, B), U(G)-= igf sup E(f, a, B).

It is always true that L(Gf) < U(G/); if L(G/) = U(G/), this common value is called
the value of G/ and will be denoted by Val (Gf).

2. Main Result. We will show that if f = I, where G € B(Gj) (the Boolean
algebra generated by the Gy’s), then G/ has a value. In [1], Blackwell proved this
result if G is a G5 Before proving this result, we give two examples of games of
this type and mention a related open question.

Example 1. On each move, players A and B choose, simultaneously, a 0 or
1. The winning set S of the form G5U F _, is defined as follows:

§=GU F where G=lo| ®_ =(0,0) for infinitely many » and w,=(1,1) for
infinitely many n},

F = {ow| w, = (0, 0) for at most finitely many 7 and o, =(1, 1) for at most
finitely many n}.

The value of this game is 1, which can be achieved by A with a nonrandom
strategy; he starts by saying 1 on each move. If B says 0 on every move, F is
hit. If B ever says 1, A then starts saying 0’s. If B then says 1’s forever, F is
still hit. If B ever says 0 again, A switches back to 1’s, etc. If there are an in-
finite number of changes G is hit, otherwise F is hit.

Example 2. The winning set is a G On each move, the players choose simul-
taneously a 0 or 1. If player A ever says 1, the game is over on that move; if B
also said 1, A wins; if B said 0, B wins. If A never says 1, the game continues
and A wins if there are infinitely many moves with outcome (0, 0). (In other words,
A tries to predict B’s choice. See [2] for a related game.)

The value of this game is 1, but there are no optimal strategies for A. Here
is a strategy for A, due to David Blackwell, which, for fixed N, guarantees A at
least 1 — 1/N:
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1972] INFINITE GAMES WITH IMPERFECT INFORMATION 503

Define N, = 2N, j=1,2,---, so that

= 1
> k-

j=l g

z|=

Player A divides the trials into successive blocks of lengths N, N, ... If he
has not yet stopped the game, i.e. played 1 when block j is reached, he selects
X]. at random from {1, 2,---, N].§. He then plays 1 at the X].th trial of block j if
B’s previous X]. — 1 plays in the block are all 1’s; otherwise, he plays 0 through-
out the block. Then, clearly,

P(A loses on jth block| jth block is reached) < l/N]..

Thus, P(A loses on jth block) < l/Nj, and P(A loses by failing to match) <
b3 (l/N].) = 1/N. However, by the nature of this strategy, if the game goes on forever,
A will win, since there would then be (0, 0)’s in each block. O

The following question remains unsolved in general: Do games with payoffs
which are simple functions based on sets in B(Gg) have a value, i.e. games with
payoff of the form /= CllBl +eeet CnIB,,’ where B, € B(Gy), c, are constants. In
fact, we do not even know whether or not the much simpler games with payoffs of
the form IQl - IQ2 have a value, where Q,, O, are open and disjoint. In another
paper we will discuss some special cases of these kinds of games and show that
they have a value.

We are now ready to prove the main result.

Lemma 1. Consider the class of sets of the form

GyUF, U(G,NnF,)uU..-u(G NF,)

where G, € Gy, F, € F . This class of sets is precisely B(Gyg).

Proof. By the fact that a finite union of G¢’s is a Gy, a finite intersection of
F_’s is an F _, and by the standard results for generating Boolean algebras (e.g.
see [4, Proposition I. 2.2, p. 7)) it is easily shown that every set in B(G s) is of
the form U;’=1 (Gz. N Fz.), G,€Gs, F, €F_. Thus, every set in B(Gg) is of the
form

<U (G, nF)) =N (G5 UFY)
i=1

i=1

(A e (ae) (9 (e ()
i=1 i=1 i=1 it/
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504 MICHAEL ORKIN [September

which, again using the fact about finite unions (intersections) of Gs’s (F,’s) is

easily seen to be of the required form.

Lemma 2. Consider the c lass of sets C = U>_, C  generated in the following

n=1 "n
way: el=G3; z'fn>1,e = sets of the form GgU A ,
n n-1

where A = complements
of sets in C_(e.g. €, =G5 UF ). We claim C=B(Gy).

Proof. By using De Morgan’s law and the fact that G5 U G3=Gg, F_.NF_ =
F_, it is easily seen that (‘34 = sets of the form G, U F U (F2 N Gz)’ 6272 = sets
of the form G, U F, U (U7, (F,N G,)) which by Lemma 1 gives the sets in
B(Gg. O

The next lemma is the first step in an induction which will yield the main

result.

Lemma 3. Let ¢ be upper semicontinuous, 0 < ¢ < 1. Suppose G € Gy Then
the game with payoff ¢ = min (¢, IG) bas a value,

Proof. The first part of this proof and A’s method of play is the same as in
[1]. Suppose G =T i.o., where T is a collection of positions. For any position x,
let G} be the game, starting from x with payoff Ut(G—) if T is hit for the first
time after x at ¢, with payoff 0 if T is never hit after x, where Ut(G—) is the
upper value of the original game starting from t. This payoff is lower semicontin-
uous, so, by [6], G: has a value and player B has an optimal strategy. We claim
Val(G}) > U, (G=); for fixed ¢ > 0, we present a strategy for B starting from x
such that no matter what A does, Ex(c_}f)) <Val(G¥) + e

Let B, starting from x, play optimally in G} until T is hit for the first time
after x, say at t. Then B plays, starting from ¢, to keep Et(<7>) < Ut(G$) + € so

E (@)=Y ptWE, (@< (U, GF) +e<Val(G) + e

teT teT

Now, for €> 0, we describe a strategy for A such that no matter what B does,
E($) > U(G=) - ¢, and the lemma will be proved. First, A plays €¢/4 optimally in
G* (e denotes the empty position). If T is hit after e, say at ¢, A then plays
€/8 optimally in G’t“l, etc. (If T is hit for the nth time at ¢, A then plays
€/2"*1 optimally in G’t"n.) Let the resulting sequence of moves be denoted by z =
(zl, Z 5 C).

We define a sequence of random variables: X, = U(G-); for B> 1, X, =
Utk(Gg) if T was hit for the kth time at ty, X, =0 if T was hit less than &
times. Thus, we have

k+1
(1) E(Xkl Xk_ly""Xo)ZXk_l—f/z .
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1972] INFINITE GAMES WITH IMPERFECT INFORMATION 505

This is obvious if X, | =0. If not, T was hit for the (k — 1)st time at ¢, _,, say,
after which A played ¢/28+1 optimally in G* to get at least Val (G* ) — /2% +1
>X, - ¢/2%*+1, Since the payoff in G* is Xk’ (1) follows. Takmg expectations

on both sides, we get

@ E(X) > E(X,_)-¢/28* = E(X) > U(Gy) - ¢/2.

k-1

Now, by the definition of upper semicontinuity and the nature of the topology
on Q, for every point z = (zl’ Zoy e .) and every €> 0, there exists k& such that

any point @ = (col, APPRE -) with w; =z, for i <k has the property
D) <p(2) +e/2 = if z€G, lw) <H(2)+¢/2
=> (still if z € G) Uzyyenyzy) (G3) < B(2) + /2
=> (for any 2) lim s:llp X, < é(2) + ¢/2.

The last implication is obvious if z € G. If z ¢ G, T is only hit say N times,

so for » > N, X =0. Using Fatou’s lemma on the last inequality, we get

E(&) > lim sup E(X)-e¢/2> U(G$)-—e. a

Theorem 1. Suppose H € Gn, ie. H=GUS, G eGy, §° €@n_1. Suppose,
also, that ¢ is upper semicontinuous with the property 0< <1, =1 on S.

Then the game with payoff ¢ = min (¢, 1) has a value.

Proof. Lemma 3 shows that the theorem is true for sets in Gl. Suppose the
theorem is true for sets in @n_l. Let H e @n, H=GUS, where G € G5, §° ¢
Gn_l (assume, without loss of generality, that G # @). Suppose G = T i.o. for
some collection of positions T. For any position x, let HY be the game starting
at x which continues until the first time T is hit after x, say at ¢, with A get-
ting U,(G~) when this happens. Otherwise, the game continues and A gets Iq.
We claim HY has a value (the payoff in H* may be neither upper nor lower semi-
continuous).

Observe that if C is closed, ] €Gg=>CN]JeGg JeF = CNJeF_;
therefore | € @ =CNJe @ Let (9 be the open set defined by the collection
of positions passing through x wh1ch later hit T. Let C_= @fc Then SN C, €
en_l since $¢ is. Define ¢* =1 — f, where f is the payoff in H%. Also, define
the upper semicontinuous function g: g = ¢* on @x, g =1 elsewhere. Thus g
satisfies the conditions of the theorem and ¢* = min (g, IanSC)’ so by the induc-
tion hypothesis the game starting at x with payoff ¢* has a value. Therefore, H¥
has a value since its payoff is f =1 — ¢* (the method of proof in Lemma 3 allows
negation of the payoff since the same proof can be used by reversing the role of

the players; it clearly allows the addition of a constant to the payoff).
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By reasoning similar tothat in Lemma 3, it can be shown that Val (H:) >
Ux(G—). Now, for fixed ¢ > 0, we will exhibit a strategy for player A which guaran-
tees that E(¢p) > U(G$) —c

As in Lemma 3, A starts out playing €/4 optimally in H¥, etc. (If T is hit
for the nth time at ¢ , A then plays ¢/2"*1 optimally in H‘t“n.) Let the resulting
play be z = (Zl, Zgyeee ).

Define the random variables: X = U(Gg); for k>1, X, = U‘k(G$) if Tis
hit for the kth time at ¢,, X, = I if T is hit less than k times. By reasoning
similar to that in Lemma 3, we get

®3) E(X,) > U(GZ) - ¢/2.

Again, by the definition of upper semicontinuity, there exists k such that any

(€,z)
point w = (wl, @yt .) agreeing with z up to zk(e'z) has the property

b (@) <Pp(2) + /2 = if z € H, ¢(w) < F(2) + ¢/2
= if z € H, U(zl,...,zk)(Gg) <P(2) +¢/2

=> for any z, lim sup X < &(2) + /2.
n

Again, the last step is obvious if z € G. If not, $ N G® is hitand =1 or §¢ N
G® is hit and lim sup, X = 0. Thus, by Fatou, E(¢) > lim sup, E(X ) > U(Gq_b) -
e. 0O

Corollary 1. If H € B(G ), the game with payoff I,; has a value.
Proof. Let ¢ =1 and use the theoremand Lemma 2.

Corollary 2. G, has a value if { satisfies the following conditions:

(a) There is a collection T of nonoverlapping positions (nonoverlapping means
x € T =» x is not an initial segment of any other member of T) such that if x € T
then [ is constant on all sequences passing through x.

(b) 0<f<1lonT.

(c) There exists H € B(G 8) such that =1, if T is never hit.

Proof. The function ¢ = 1 off T, ¢ =/ otherwise, is upper semicontinuous,
¢ =1 on H, and { = min (¢, IH) so the theorem applies. O

Acknowledgement. I wish to express my appreciation to Professor David Black-
well for suggesting the problem herein and for his encouragement and advice during
the course of my research.
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