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BULLETIN DE IL’ACADEMIE
POLONAISE DES SCIENCES
Serie des sciences math., astr.
et phys, — Vol. XX, No. § 1972

MATHEMATICS
{MEASURE AND INTEGRATION}

A Blackwell Space Which Is Not Analytic

by
M. ORKIN

Presented by K. KURATOWSKI on July 31, 1971

Summary. Blackwell proved in 1954 that if 4 is an analytic set {contained in a Polish space) and
i is arbitrary countably generated a-field contained in o-field of 94 of the relatively Borel subsets
4 and such that all singletons belong to §, then ¥=%.. In the paper the author proves
that in every uncountable Polish space there is contained a set A having the above property of
Blackwell and such that neither 4 nor the complement of 4 contains uncountable analytical set,

A countably generated o-field §§ of subsets of a set X is called a Blackwell space
If for every countably generated o-field € < § having the same atoms as §, then
= An equivalent characterization is the following: If fis a 1-1 Borel measurable
function from X into a countably generated measurable space, then f~! is also
Borel (e.g., see {3]). In [1], Blackwell proved that every analytic subset of a Polish
space (endowed with the relative Borel o-field) is a Blackwell space. The converse
to this result has remained an open question. In this paper we prove the converse
to be false; if X is a Polish space (uncountable complete separable metric space),
we construct a non-analytic (in fact, non measurable) subset of X which is a Blackwell
space.

The Construction. Let X be an (uncountable) Polish space. Let 913 be the o-field
of Borel sets of X. Using transfinite induction, we will construct a set AcX with
the following properties:

1*  Neither A nor A€ contains an uncountable analytic set (thus, 4 is not analytic

nor measurable with respect to the completion of any measure on ‘B).
2% If f is a Borel function from X—X such that S;={x|card f~1 (x)>1} is
uncountable, then there exists distinct x,y in A such that f{x)=f ().
We proceed with the construction; we first well order the class of uncountable
Borel sets in X (This class has power c). We next well order the class of Borel functions
f: X— X which satisfy the condition that S, is uncountable. This class of functions
also has power ¢. We inductively construct two disjoint collections of nested sets,
A,, E,, as follows:

First, we select four distinct members of X, a,, by, ¢;,d,, where a,,d, are

members of By, and f; (b;)=/1 (¢,), and where B,, f, are the first members of
[437]
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the previous orderings. We let {a,, by, ¢,}=4,, {d;}=E,. When B,, f, are reached in
the induction (where a is an ordinal less than ¢) we select four distinct points a,, b,
¢,» d, which have not previously been selected and where a,, d, are members of B, and
where f; (b,)=f; (c,). We can do this because the sets B, and S, are resepctively Borel

and analytic and since uncountable, must have power ¢. We then let A,={_J 4,V
g<x

U {a,, by, €2}, E.=) Eg U {d,}, etc. We then let A=|J 4,. It is easily seen that 4
B<un L £
satisfies properties 1%, 2%

We now consider the pair (4, 13°), where 93° is the relative Borel o-field on A.
Suppose that g° : A— X is W° measurable and 1-1. It is known (see [3], p. 434, V])
that g° can be extended to a ‘13 measurable function g, on all of X. We have, by the
properties of A, that g has the following properties:

3% All sets g=1 (¥) are countable (follows from 1%).

4* 8, is countable (otherwise, by 2%, for some distinct u,ve A, g° W)=g ()=

=g (v}=g° (v), which cannot happen, since g° is 1-1).
But 3* and 4* imply there is a countable set N e X such that the function A=g
restricted to X\ NV is 1-1. Since X\ N is Borel, the inverse 4#~! is a Borel function,
thus, so is the inverse g® =1, which completes the proof.

We wish to thank the referee, Professor C. Ryll-Nardzewski, for suggesting
a simplified version of the original proof.

DEPARTMENT OF MATHEMATICS, CASE WESTERN RESERVE UNIVERSITY, CLEVELAND, OHIO
44106 {TJSA) .
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M. Opkrn, IfpocrparetBo Biexyaia, KOTGPOE He NBJARETCA AHATHTHMECKHM
Conepmanue. [. Briexysnn gorasan eue 8 1954 roay. YTo ecid A4 — aHATHIHMECKOE MHOKECTEO
(comepxaineecs B DONBCKOM HPOCTDAHCTRE) H €CAH o — MPOH3BONEHOE CHETHO MOPORAACMOE
g-I0NC, CoAepkalneecs B o-none U, peTATHBHO GopeneBslx DOAMHOMKCCTE A H TaKoe, 9TO BCE
CHHIeILTOREL NPUAANIEKAT X [, TO F="3, B macTommel paboTe aBTop HOKAILTBAET, 9TO B KAX-
AOM HECHCTHOM TOJILCKOM IIPOCTPAHCTEE COAEPKHTCHE MHOXKECTBO A, obnamaiomee BHILCYIIOMS-
HYTLiM CROHCTBOM Brnekysmna M Takoe, ¥TO HH 3TO MHOXECTRO, HHA €r0 ZONOJHERHE HE CORepXaT
HECYCTHOTO RHANHTHYECKOIOD MHOKECCTEA.
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