

Rapid #: -12882344

CROSS REF ID: 128306

LENDER: MAFCI :: FC Repository

BORROWER: CSH :: Main Library

TYPE: Article CC:CCL

JOURNAL TITLE: Bulletin de l'Academie Polonaise des Sciences. Serie des Sciences Mathematiques, Astronomiques et Physiques

USER JOURNAL TITLE: BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES

ARTICLE TITLE: Blackwell space which is not analytic

ARTICLE AUTHOR: Orkin

VOLUME: 20

ISSUE: 6

MONTH:

YEAR: 1972

PAGES: 437-438

ISSN: 0001-4117

OCLC #:

Processed by RapidX: 2/16/2018 8:52:38 AM

This material may be protected by copyright law (Title 17 U.S. Code)

RapidX Upload**3 Rapid #: -12882344**

Status	Rapid Code	Branch Name	Start Date
New	CSH	Main Library	02/15/2018 02:52 PM
Pending	MAFCI	FC Repository	02/15/2018 02:53 PM
Batch Not Printed	MAFCI	FC Repository	02/16/2018 09:11 AM

CALL #: **UB020477****LOCATION:** **MAFCI :: FC Repository :: Five College
Depository**

TYPE: Article CC:CCL
JOURNAL TITLE: Bulletin de l'Academie Polonaise des Sciences. Serie des Sciences Mathematiques, Astronomiques et Physiques
USER JOURNAL TITLE: BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES
MAFCI CATALOG
TITLE: Bulletin de l'Academie polonaise des sciences. Série des sciences mathématiques, astronomiques, et physiques
ARTICLE TITLE: Blackwell space which is not analytic
ARTICLE AUTHOR: Orkin
VOLUME: 20
ISSUE: 6
MONTH:
YEAR: 1972
PAGES: 437-438
ISSN: 0001-4117
OCLC #: MAFCI OCLC #: 1585821
CROSS REFERENCE ID: [TN:128306][ODYSSEY:206.107.44.59/ILL]
VERIFIED:

BORROWER: **CSH :: Main Library**

This material may be protected by copyright law (Title 17 U.S. Code)
2/16/2018 9:11:53 AM

A Blackwell Space Which Is Not Analytic

by

M. ORKIN

Presented by K. KURATOWSKI on July 31, 1971

Summary. Blackwell proved in 1954 that if A is an analytic set (contained in a Polish space) and \mathfrak{F} is arbitrary countably generated σ -field contained in σ -field of \mathcal{B}_A of the relatively Borel subsets A and such that all singletons belong to \mathfrak{F} , then $\mathfrak{F} = \mathcal{B}_A$. In the paper the author proves that in every uncountable Polish space there is contained a set A having the above property of Blackwell and such that neither A nor the complement of A contains uncountable analytical set.

A countably generated σ -field \mathfrak{F} of subsets of a set X is called a Blackwell space if for every countably generated σ -field $\mathcal{C} \subset \mathfrak{F}$ having the same atoms as \mathfrak{F} , then $\mathcal{C} = \mathfrak{F}$. An equivalent characterization is the following: If f is a 1-1 Borel measurable function from X into a countably generated measurable space, then f^{-1} is also Borel (e.g., see [3]). In [1], Blackwell proved that every analytic subset of a Polish space (endowed with the relative Borel σ -field) is a Blackwell space. The converse to this result has remained an open question. In this paper we prove the converse to be false; if X is a Polish space (uncountable complete separable metric space), we construct a non-analytic (in fact, non measurable) subset of X which is a Blackwell space.

The Construction. Let X be an (uncountable) Polish space. Let \mathcal{B} be the σ -field of Borel sets of X . Using transfinite induction, we will construct a set $A \subset X$ with the following properties:

- 1* *Neither A nor A^c contains an uncountable analytic set (thus, A is not analytic nor measurable with respect to the completion of any measure on \mathcal{B}).*
- 2* *If f is a Borel function from $X \rightarrow X$ such that $S_f = \{x \mid \text{card } f^{-1}(x) > 1\}$ is uncountable, then there exists distinct x, y in A such that $f(x) = f(y)$.*

We proceed with the construction; we first well order the class of uncountable Borel sets in X (This class has power c). We next well order the class of Borel functions $f: X \rightarrow X$ which satisfy the condition that S_f is uncountable. This class of functions also has power c . We inductively construct two disjoint collections of nested sets, A_α, E_α , as follows:

First, we select four distinct members of X , a_1, b_1, c_1, d_1 , where a_1, d_1 are members of B_1 , and $f_1(b_1) = f_1(c_1)$, and where B_1, f_1 are the first members of

the previous orderings. We let $\{a_1, b_1, c_1\} = A_1$, $\{d_1\} = E_1$. When B_α, f_α are reached in the induction (where α is an ordinal less than c) we select four distinct points $a_\alpha, b_\alpha, c_\alpha, d_\alpha$ which have not previously been selected and where a_α, d_α are members of B_α and where $f_\alpha(b_\alpha) = f_\alpha(c_\alpha)$. We can do this because the sets B_α and S_{f_α} are respectively Borel and analytic and since uncountable, must have power c . We then let $A_\alpha = \bigcup_{\beta < \alpha} A_\beta \cup \{a_\alpha, b_\alpha, c_\alpha\}$, $E_\alpha = \bigcup_{\beta < \alpha} E_\beta \cup \{d_\alpha\}$, etc. We then let $A = \bigcup_{\alpha < c} A_\alpha$. It is easily seen that A satisfies properties 1*, 2*.

We now consider the pair (A, \mathcal{B}^0) , where \mathcal{B}^0 is the relative Borel σ -field on A . Suppose that $g^0 : A \rightarrow X$ is \mathcal{B}^0 measurable and 1-1. It is known (see [3], p. 434, VI) that g^0 can be extended to a \mathcal{B} measurable function g , on all of X . We have, by the properties of A , that g has the following properties:

3* All sets $g^{-1}(y)$ are countable (follows from 1*).

4* S_g is countable (otherwise, by 2*, for some distinct $u, v \in A$, $g^0(u) = g(u) = g(v) = g^0(v)$, which cannot happen, since g^0 is 1-1).

But 3* and 4* imply there is a countable set $N \in X$ such that the function $h = g$ restricted to $X \setminus N$ is 1-1. Since $X \setminus N$ is Borel, the inverse h^{-1} is a Borel function, thus, so is the inverse g^{0-1} , which completes the proof.

We wish to thank the referee, Professor C. Ryll-Nardzewski, for suggesting a simplified version of the original proof.

DEPARTMENT OF MATHEMATICS, CASE WESTERN RESERVE UNIVERSITY, CLEVELAND, OHIO 44106 (USA)

REFERENCES

- [1] D. Blackwell, *On a class of probability spaces*, in: *Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability*, University of California Press, 1954, p. 1-6.
- [2] K. Kuratowski, *Topology I*, English translation of the French edition, Acad. Press, 1966.
- [3] A. Maitra, *Coanalytic sets that are not Blackwell spaces*, *Fund. Math.*, 67 (1970), 251-254.

М. Оркин, Пространство Блекуэлла, которое не является аналитическим

Содержание. Д. Блекуэлл доказал еще в 1954 году, что если A — аналитическое множество (содержащееся впольском пространстве) и если \mathcal{B} — произвольное счетно порождаемое σ -поле, содержащееся в σ -поле \mathcal{B}_A релятивно борелевых подмножеств A и такое, что все сингельтоны принадлежат к \mathcal{B} , то $\mathcal{B} = \mathcal{B}_A$. В настоящей работе автор доказывает, что в каждом несчетном польском пространстве содержится множество A , обладающее вышеупомянутым свойством Блекуэлла и такое, что ни это множество, ни его дополнение не содержат несчетного аналитического множества.