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PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 36, Number 1, November 1972

AN APPROXIMATION THEOREM FOR INFINITE GAMES!

MICHAEL ORKIN

ABSTRACT. We consider infinite, two person zero sum games
played as follows: On the nth move, players 4, B select privately
from fixed finite sets, 4,, By, the result of their selections being
made known before the next selection is made. A point in the
associated sequence space Q=] |71 (4.XB,) is thus produced
upon which B pays 4 an amount determined by a payoff function
defined on Q. We show that if the payoff functions of games {G,}
are upper semicontinuous and decrease pointwise to a function
which is the payoff for a game, G, then Val(G,,)lVal(G). This
shows that a certain class of games can be approximated by finite
games. We then give a counterexample to possibly more general
approximation theorems by displaying a sequence of games {G,}
with upper semicontinuous payoff functions which increase to
the payoff of a game G, and where Val(G,)=0 for all n but
Val(G)=1.

Introduction. Infinite games with imperfect information have been
studied by several writers, notably Blackwell [1], [2], Gillette [3], Milnor
and Shapley [4].

Before proceeding with the main result we will introduce notation and
describe the structure of these games.

Let {4,}, {B,} be sequences of nonempty finite sets. Let Z,=4, X B,
and let Q be the space [ [;_; Z,, of infinite sequences w={(z,, z,, * - -) where
z,€Z,. Let X={(zy, 25, " -+, z,)|z; € Z,, n=1, 2, - - -} be the set of finite
starting sequences or partial histories.

Suppose fis a bounded Baire function on € (with respect to the product
topology). Then f, called a payoff function, defines a zero-sum two person
game G,, played as follows:

First, player A selects a; € A; while player B simultaneously selects
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AN APPROXIMATION THEOREM FOR INFINITE GAMES 213

b, € B;. The result, z;=(a;, b)) € Z,, is announced to both players, upon
which A selects a, € A, while B is selecting b, € B,, etc. The result of this
infinite sequence of moves is a point w = (z;, z,, - - *) € Q and B pays 4
the amount f(w). For any partial history x € X we can define a subgame
of the original game (usually referred to as the original game, “starting
from x”’) by having the players play as above except redefining the payoff
function as f,(w)=f(xw).

A strategy o (B) for A (B) gives for each partial history x (of length n,
say) a probability distribution on 4, (B,,;) with the stipulation that if
the current position is x, 4 (B) will make his next choice according to
o (B). A pair of strategies, («, f) defines a probability distribution, P,z on
Q and, hence, an expected payoff to 4 in G, when A uses « and B uses f:

E(f, 2, B) = f F(0) dPoy(®).

(We will usually omit the o, # from the notation when it is clear what is

happening.)
The lower and upper values of G, are, respectively,

L(G,) = sup inf E(f, «, f3), U(G,) = inf sup E(f, o, B).
a B B a

It is always true that L(G,)SU(G,); if L(G,)=U(G,), this common value
is called the value of G, and will be denoted by Val(G,).

Finally, a payoff function f is called upper (lower) semicontinuous if
w,—w=-lim sup, f(w,)= f(w) (lim inf, f(w,)Z f(w)).

The result of [5] we will use is as follows. Let M be compact, N any
space, f defined on M x N which is concave-convexlike. If f(u, ») is u.s.c.
in u for each », then sup,, inf, f=inf, sup, f. We show how to apply this to
the present situation: The space of plays, €2, and the set of strategies for
each player gives rise to a product of compact spaces, Q% x QF, where
Q=[x A%, Qf=[12, Bx. We define Ay, B: as follows: If « is a
strategy for player A, the corresponding member of Q% is a sequence
(g, &g, " =+, ,, - - *), where a, € A} is a finite list of probabilities on 4,,,
one for each possible past history (the list is finite since the sets 4,, B,,
n=1,2,---, are finite). By is defined analogously. The corresponding
product topology makes Q%, QF compact. If f'is a payoff on 2, we get a
corresponding payoff f* on Q%xQf by defining f*(«, p)=E(f, «, B).
If fis u.s.c. on Q, so is f* on Q% x Q (in the product topology); also f* is
linear, so [5] applies. It is easily seen that sup, infs f*=infj sup, /*
implies the game with payoff f has a value, so [5] gives us that games with
u.s.c. payoffs have a value.
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214 MICHAEL ORKIN [November

We shall now prove the main result, namely

THEOREM 2.1.  Suppose G, are games with upper semicontinuous
payoff functions f,, where the f, are (pointwise) nonincreasing, f,|f (which
is, therefore, also upper s.c.). Then Val(G,)=lim,Val(G, ).

We first prove a lemma.

LemMmA 2.1, Suppose f,, f are as above. For any partial history x, let
my=lim, Val,(G, ), where Val,(G,) means the value of the game with
payoff f,, starting from x. (The value of games with upper s.c. payoff
function exists, by [5].) Let G be the one move game which starts at x and
has payoff g=m,, if y is the next position hit. Claim Val(G})=m,.

ProoOF OF LEMMA. We will show by contradiction that for fixed
¢>0, A can play in GJ to guarantee that E(g)=m,—e. Assume not; then
for every strategy of 4, player B can play to make E(g)<m,—e¢.

For each possible next position, y,, i=1,2, -, k, let f, be such that
Valyl(anl)<myl+s/2. Let m=max,(n,); so that for all /,

(1) Valyl(Gfm) <m, + 2.

Now for any fixed strategy of player 4, let B play according to the assump-
tion, to make E(g)<m,—¢ and then play ¢/2 optimally in G, to make

k k
E(f.) = 2 p(y)Val,(G,) + 2 < > p(yom,, + & (by (1))

i=1 i=1

(by assumption) which contradicts the fact that m,=lim, Val,(G, ), and
the lemma is proved. []

Now we are ready for the

Proor oF THEOREM 2.1. We shall show that for fixed ¢>0, 4 can
guarantee that E(f)=lim, Val(G, )—e=m,—e (where e denotes the
empty sequence). This will complete the proof, since {Val(G, )} is a non-
increasing sequence, and so U(G,)=lim, Val(G, ).

First, let 4 play optimally in G}, and then, if x, is the position after
the nth move, let 4 play optimally in G} . Define the random variables
Xo=m,; if n21, X,,=m, if x, is the position after the first » moves. By
the lemma, we have E(X,|X, ;- X=X, ;=

(2 E(X,) Z m,
for all n.

Now, using the usual facts about upper semicontinuity, for fixed &
(if z=(zy, z5, - - ) is the resulting sequence of moves), there exists
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1972] AN APPROXIMATION THEOREM FOR INFINITE GAMES 215

N . such that if nZ N, , ., any sequence w=(w;, w,, * * *) agreeing
with z up to the nth move has the property

Jelw) < fil2) + e=Val, ., . .0(G,) <fil2) + &
My g <Si(2) €
= for all z, limsup, X,(2) < fi(z) + ¢
=- (by Fatou) limsup, E(X,) < E(f) + ¢
= E(f) > m, —¢e forallk
=E(f)>m,—¢

(by the dominated convergence theorem). []

COROLLARY 1. Iff, are lower semicontinuous, f,,1f, thenlim, Val(G, )=
Val(G)).

ProoOF. The negative of an u.s.c. function is l.s.c. so the theorem
applies by reversing the roles of the players.

COROLLARY 2. Games with lower semicontinuous payoff functions can
be approximated by finite games.

PrROOF. Suppose f is ls.c. Define f, by f,(»)=inf,.g f(w) where
S={w € Q|lst n coordinates of w agree with the 1st n coordinates of »}.
Then the games G, are “finite”, since the payoff is decided in the first n
moves. But the fact that fis I.s.c. implies f,, T/, so we just apply Corollary 1.
(The functions f, are continuous.)

COROLLARY 3. Open games can be approximated by finite games, i.e.,
if f=1I, where O is an open set (in the product topology on Q) then the game
G can be approximated by the games G,,, where the payoff in G, is 1 if O
is hit by the nth move, 0 otherwise. (This is actually a special case of
Corollary 2.)

ProOF. Immediate since /, is l.s.c.

A COUNTEREXAMPLE. Approximation theorems do not exist in general
as the following example shows. Let 4,=B,={0, 1} for n=1,2,---, so
Q=TTr, {0,1}x{0, 1}. Let S,=F,UG where F,={w € Q|di<n with
w,;=(1, 1)} (in other words Fn={w|both players say 1 on the same move
sometime before the nth move}), and G={w € Q|player B says 0 on every
move}. Clearly F, and G are closed sets, so the functions Ig are upper
semicontinuous. Now the games G, with payoffs Iy have value 0 since
player B need only say O for the first » moves and 1 sometime after that
to keep play from hitting S,,. Also since S,;=> S, for all n, Ig 1Ig where
S=U2, S,. But the game with payoff Iy has value 1 which player 4

This content downloaded from 134.154.190.2 on Fri, 16 Feb 2018 17:34:21 UTC
All use subject to http://about.jstor.org/terms



216 MICHAEL ORKIN

can achieve by merely saying 1 on every move. Player B either must say 0
every time or 1 sometime and so S is hit.

AN OPEN QUESTION. We do not know whether if f,, are continuous,
f.—f, then Val G(F,)—Val G(F). This question has some relevance to
the study of stochastic games (see [2], [3]).

I wish to express my gratitude to David Blackwell for many helpful
conversations during the course of this research.
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