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 PROCEEDINGS OF THE
 AMERICAN MATHEMATICAL SOCIETY
 Volume 36, Number 1, November 1972

 AN APPROXIMATION THEOREM FOR INFINITE GAMES1

 MICHAEL ORKIN

 ABSTRACT. We consider infinite, two person zero sum games

 played as follows: On the nth move, players A, B select privately

 from fixed finite sets, A,, Bn, the result of their selections being
 made known before the next selection is made. A point in the

 associated sequence space Q = ]7n= (An x B,n) is thus produced
 upon which B pays A an amount determined by a payoff function

 defined on U. We show that if the payoff functions of games {GnJ
 are upper semicontinuous and decrease pointwise to a function

 which is the payoff for a game, G, then Val(GJ)IVal(G). This
 shows that a certain class of games can be approximated by finite

 games. We then give a counterexample to possibly more general

 approximation theorems by displaying a sequence of games {GJ}
 with upper semicontinuous payoff functions which increase to
 the payoff of a game G, and where Val(Gn)=0 for all n but
 Val(G) = 1.

 Introduction. Infinite games with imperfect information have been

 studied by several writers, notably Blackwell [1], [2], Gillette [3], Milnor

 and Shapley [4].
 Before proceeding with the main result we will introduce notation and

 describe the structure of these games.

 Let {A}, {BJ} be sequences of nonempty finite sets. Let Z.=AnxBn
 and let Q be the space 1It1' Zn of infinite sequences o-=(z1, Z2 *) where
 zn e Zn Let X={(z1, Z2, , v zn)lzi e Zi, n= 1, 2, -} be the set of finite
 starting sequences or partial histories.

 Supposef is a bounded Baire function on Q (with respect to the product
 topology). Thenf, called a payoff function, defines a zero-sum two person
 game Gf, played as follows:

 First, player A selects a1 e A1 while player B simultaneously selects
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 b1 E B1. The result, z1= (a1, bl) E Z1, is announced to both players, upon
 which A selects a2 E A2 while B is selecting b2 E B2, etc. The result of this

 infinite sequence of moves is a point w = (z1, Z2,1 * ) E LI and B pays A
 the amount f(w). For any partial history x E X we can define a subgame
 of the original game (usually referred to as the original game, "starting
 from x") by having the players play as above except redefining the payoff

 function as f,(ow)=f(xco).
 A strategy a (/3) for A (B) gives for each partial history x (of length n,

 say) a probability distribution on A,+, (B,+1) with the stipulation that if
 the current position is x, A (B) will make his next choice according to
 a (/3). A pair of strategies, (x, /3) defines a probability distribution, Pafl on
 Q and, hence, an expected payoff to A in Gf when A uses x and B uses ,B:

 E(f, X, f/) = f(w) dP.#(o)).

 (We will usually omit the a, / from the notation when it is clear what is
 happening.)

 The lower and upper values of Gf are, respectively,

 L(Gf) = sup inf E(f, X, fl), U(Gf) = inf sup E(f, or., /3).
 oc p p a

 It is always true that L(Gf)_ U(Gf); if L(Gf)= U(Gf), this common value
 is called the value of Gf and will be denoted by Val(Gf).

 Finally, a payoff function f is called upper (lower) semicontinuous if

 (fin cOl--im sup,,f(Co n)_ f(o-))(lim infn f(ct)n)_f(oc))).
 The result of [5] we will use is as follows. Let M be compact, N any

 space,f defined on Mx N which is concave-convexlike. If f(l1, v) is u.s.c.
 in ,u for each v, then sup, infjf=inf, supjf. We show how to apply this to
 the present situation: The space of plays, Q, and the set of strategies for
 each player gives rise to a product of compact spaces, QA x QB, where
 A=7iJn=lA*, n nn=fl-t B*. We define A*, B* as follows: If a is a
 strategy for player A, the corresponding member of QA is a sequence
 (ayl, a2' * **, ), where an E A* is a finite list of probabilities on An,
 one for each possible past history (the list is finite since the sets An, Bn,
 n= 1, 2, are finite). B* is defined analogously. The corresponding
 product topology makes QA, Q* compact. Iff is a payoff on Q2, we get a
 corresponding payoff f* on Qi2 x Q i by defining f*(oa, p)=E(f, a,B /).
 Iff is u.s.c. on Q, so isf* on QA x Qf (in the product topology); alsof * is

 linear, so [5] applies. It is easily seen that sup, inf8f* =infp supaf*
 implies the game with payofff has a value, so [5] gives us that games with
 u.s.c. payoffs have a value.
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 We shall now prove the main result, namely

 THEOREM 2.1. Suppose Gf are games with upper semicontinuous

 payoff functions f, where the fr are (pointwise) nonincreasing, fj'f (which
 is, therefore, also upper s.c.). Then Val(Gf)=limflVal(Gf.).

 We first prove a lemma.

 LEMMA 2.1. Suppose f, f are as above. For any partial history x, let

 mx=limn Valx(Gf.), where Valx(Gf.) means the value of the game with
 payoff ft, starting from x. (The value of games with upper s.c. payoff
 function exists, by [5].) Let G* be the one move game which starts at x and
 has payoff g=m m if y is the next position hit. Claim Val(G*)_mx.

 PROOF OF LEMMA. We will show by contradiction that for fixed

 e>0, A can play in G* to guarantee that E(g)>mx-e. Assume not; then
 for every strategy of A, player B can play to make E(g)<mx-e.

 For each possible next position, yi, i= 1, 2, * * *, k, letfn be such that

 ValY, (Gfn)<m? +e/2. Let m=maxi(n); so that for all i,

 (1) Valv (Gf ) < mr, + e/2.
 Now for any fixed strategy of player A, let B play according to the assump-

 tion, to make E(g)<mx-e and then play e/2 optimally in Gf to make
 k k

 Ex(fm) ? p(yi)Valyz(Gfm) ? E/2 < 2 p(yi)mq, ? 8 (by (1))
 i=l1 a=

 = E(g) + 8 < mx

 (by assumption) which contradicts the fact that mx=limn Valx(Gf,), and
 the lemma is proved. C

 Now we are ready for the

 PROOF OF THEOREM 2.1. We shall show that for fixed E>O, A can

 guarantee that E(f)>lim, Val(Gfn)-8=me-8 (where e denotes the
 empty sequence). This will complete the proof, since {Val(Gf )} is a non-

 increasing sequence, and so U(Gf)_lim,, Val(Gf.).
 First, let A play optimally in G*, and then, if xn is the position after

 the nth move, let A play optimally in G*. Define the random variables

 Xo=me; if n> 1, Xn=mx. if xn is the position after the first n moves. By
 the lemma, we have E(xn1Xn-... XO) _X-=>

 (2) E(X,,) _ me

 for all n.

 Now, using the usual facts about upper semicontinuity, for fixed k

 (if z=(zI, Z2, * *) is the resulting sequence of moves), there exists
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 N(kz E) such that if n> N(k,Z, ), any sequence O=(w1 ( 2,il *) agreeing
 with z up to the nth move has the property

 f(wc) < fk(z) + Val (zl. Z. z n) (Gf ) < fk(z) +
 ==-m(Z1,Z2.. Zn) <fk(z) + 8

 =- for all z, lrm supn Xn(z) <A(z) + 8

 = (by Fatou) lim sup, E(Xn) < E(fk) + 8
 z>E(fk) > me-E for all k

 E(f) > me - 8

 (by the dominated convergence theorem). D

 COROLLARY 1. Iff, are lower semicontinuous,ft If, then limo Val(Gf ) =
 Val(Gf).

 PROOF. The negative of an u.s.c. function is l.s.c. so the theorem

 applies by reversing the roles of the players.

 COROLLARY 2. Games with lower semicontinuous payoff functions can
 be approximated by finite games.

 PROOF. Suppose f is l.s.c. Define ft by fn(v)=inf,eSf(co)) where
 S={wo E Q 1st n coordinates of co agree with the 1st n coordinates of v}.

 Then the games Gf are "finite", since the payoff is decided in the first n
 moves. But the fact thatf is l.s.c. impliesf, {f, so we just apply Corollary 1.
 (The functionsf, are continuous.)

 COROLLARY 3. Open games can be approximated by finite games, i.e.,

 iff=Ic, where 0 is an open set (in the product topology on Q) then the game
 G can be approximated by the games Gn, where the payoff in Gn is 1 if (
 is hit by the nth move, 0 otherwise. (This is actually a special case of
 Corollary 2.)

 PROOF. Immediate since I, is l.s.c.
 A COUNTEREXAMPLE. Approximation theorems do not exist in general

 as the following example shows. Let A,=B ={0, 1} for n=1, 2, * * *, so
 Q= ]7J 1 {0, 1} X {0, 1}. Let Sn =Fn uG where Fn=={cl) c Q2|1i<n with
 coi= (1, 1)} (in other words Fn= {co both players say 1 on the same move
 sometime before the nth move}), and G = {co E Q player B says 0 on every

 move}. Clearly Fn and G are closed sets, so the functions ISn are upper

 semicontinuous. Now the games Gn with payoffs Isn have value 0 since
 player B need only say 0 for the first n moves and 1 sometime after that

 to keep play from hitting Sn. Also since Sn+l Sn for all n, Isn IS where
 S= U 0?l Sn. But the game with payoff Is has value 1 which player A
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 can achieve by merely saying 1 on every move. Player B either must say 0

 every time or 1 sometime and so S is hit.

 AN OPEN QUESTION. We do not know whether if f, are continuous,
 fn-~f, then Val G(Fn)--Val G(F). This question has some relevance to
 the study of stochastic games (see [2], [3]).

 I wish to express my gratitude to David Blackwell for many helpful
 conversations during the course of this research.
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