

An Approximation Theorem for Infinite Games

Author(s): Michael Orkin

Source: *Proceedings of the American Mathematical Society*, Vol. 36, No. 1 (Nov., 1972), pp. 212-216

Published by: American Mathematical Society

Stable URL: <http://www.jstor.org/stable/2039062>

Accessed: 16-02-2018 17:34 UTC

REFERENCES

Linked references are available on JSTOR for this article:

http://www.jstor.org/stable/2039062?seq=1&cid=pdf-reference#references_tab_contents

You may need to log in to JSTOR to access the linked references.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

<http://about.jstor.org/terms>

JSTOR

American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to *Proceedings of the American Mathematical Society*

AN APPROXIMATION THEOREM FOR INFINITE GAMES¹

MICHAEL ORKIN

ABSTRACT. We consider infinite, two person zero sum games played as follows: On the n th move, players A , B select privately from fixed finite sets, A_n , B_n , the result of their selections being made known before the next selection is made. A point in the associated sequence space $\Omega = \prod_{n=1}^{\infty} (A_n \times B_n)$ is thus produced upon which B pays A an amount determined by a payoff function defined on Ω . We show that if the payoff functions of games $\{G_n\}$ are upper semicontinuous and decrease pointwise to a function which is the payoff for a game, G , then $\text{Val}(G_n) \downarrow \text{Val}(G)$. This shows that a certain class of games can be approximated by finite games. We then give a counterexample to possibly more general approximation theorems by displaying a sequence of games $\{G_n\}$ with upper semicontinuous payoff functions which increase to the payoff of a game G , and where $\text{Val}(G_n) = 0$ for all n but $\text{Val}(G) = 1$.

Introduction. Infinite games with imperfect information have been studied by several writers, notably Blackwell [1], [2], Gillette [3], Milnor and Shapley [4].

Before proceeding with the main result we will introduce notation and describe the structure of these games.

Let $\{A_n\}$, $\{B_n\}$ be sequences of nonempty finite sets. Let $Z_n = A_n \times B_n$ and let Ω be the space $\prod_{n=1}^{\infty} Z_n$ of infinite sequences $\omega = (z_1, z_2, \dots)$ where $z_n \in Z_n$. Let $X = \{(z_1, z_2, \dots, z_n) | z_i \in Z_i, n = 1, 2, \dots\}$ be the set of finite starting sequences or partial histories.

Suppose f is a bounded Baire function on Ω (with respect to the product topology). Then f , called a payoff function, defines a zero-sum two person game G_f , played as follows:

First, player A selects $a_1 \in A_1$ while player B simultaneously selects

Received by the editors September 29, 1971.

AMS 1970 subject classifications. Primary 90D05; Secondary 60G45.

Key words and phrases. Imperfect information, zero sum two person game, infinite game, random strategy.

¹ This paper is part of the author's doctoral dissertation at the University of California, Berkeley, and was prepared with the partial support of U.S. Air Force Grant AF-AFOSR-1312-67 and U.S. Office of Naval Research Contract NONR N00014-66-C0036.

© American Mathematical Society 1972

$b_1 \in B_1$. The result, $z_1 = (a_1, b_1) \in Z_1$, is announced to both players, upon which A selects $a_2 \in A_2$ while B is selecting $b_2 \in B_2$, etc. The result of this infinite sequence of moves is a point $\omega = (z_1, z_2, \dots) \in \Omega$ and B pays A the amount $f(\omega)$. For any partial history $x \in X$ we can define a subgame of the original game (usually referred to as the original game, "starting from x ") by having the players play as above except redefining the payoff function as $f_x(\omega) = f(x\omega)$.

A strategy α (β) for A (B) gives for each partial history x (of length n , say) a probability distribution on A_{n+1} (B_{n+1}) with the stipulation that if the current position is x , A (B) will make his next choice according to α (β). A pair of strategies, (α, β) defines a probability distribution, $P_{\alpha\beta}$ on Ω and, hence, an expected payoff to A in G_f , when A uses α and B uses β :

$$E(f, \alpha, \beta) = \int f(\omega) dP_{\alpha\beta}(\omega).$$

(We will usually omit the α, β from the notation when it is clear what is happening.)

The lower and upper values of G_f are, respectively,

$$L(G_f) = \sup_{\alpha} \inf_{\beta} E(f, \alpha, \beta), \quad U(G_f) = \inf_{\beta} \sup_{\alpha} E(f, \alpha, \beta).$$

It is always true that $L(G_f) \leq U(G_f)$; if $L(G_f) = U(G_f)$, this common value is called the value of G_f and will be denoted by $\text{Val}(G_f)$.

Finally, a payoff function f is called upper (lower) semicontinuous if $\omega_n \rightarrow \omega \Rightarrow \limsup_n f(\omega_n) \leq f(\omega)$ ($\liminf_n f(\omega_n) \geq f(\omega)$).

The result of [5] we will use is as follows. Let M be compact, N any space, f defined on $M \times N$ which is concave-convexlike. If $f(\mu, \nu)$ is u.s.c. in μ for each ν , then $\sup_{\mu} \inf_{\nu} f = \inf_{\nu} \sup_{\mu} f$. We show how to apply this to the present situation: The space of plays, Ω , and the set of strategies for each player gives rise to a product of compact spaces, $\Omega_A^* \times \Omega_B^*$, where $\Omega_A^* = \prod_{n=1}^{\infty} A_n^*$, $\Omega_B^* = \prod_{n=1}^{\infty} B_n^*$. We define A_n^* , B_n^* as follows: If α is a strategy for player A , the corresponding member of Ω_A^* is a sequence $(\alpha_1, \alpha_2, \dots, \alpha_n, \dots)$, where $\alpha_n \in A_n^*$ is a finite list of probabilities on A_n , one for each possible past history (the list is finite since the sets A_n , B_n , $n=1, 2, \dots$, are finite). B_n^* is defined analogously. The corresponding product topology makes Ω_A^* , Ω_B^* compact. If f is a payoff on Ω , we get a corresponding payoff f^* on $\Omega_A^* \times \Omega_B^*$ by defining $f^*(\alpha, \rho) = E(f, \alpha, \beta)$. If f is u.s.c. on Ω , so is f^* on $\Omega_A^* \times \Omega_B^*$ (in the product topology); also f^* is linear, so [5] applies. It is easily seen that $\sup_{\alpha} \inf_{\beta} f^* = \inf_{\beta} \sup_{\alpha} f^*$ implies the game with payoff f has a value, so [5] gives us that games with u.s.c. payoffs have a value.

We shall now prove the main result, namely

THEOREM 2.1. *Suppose G_{f_n} are games with upper semicontinuous payoff functions f_n , where the f_n are (pointwise) nonincreasing, $f_n \downarrow f$ (which is, therefore, also upper s.c.). Then $\text{Val}(G_f) = \lim_n \text{Val}(G_{f_n})$.*

We first prove a lemma.

LEMMA 2.1. *Suppose f_n, f are as above. For any partial history x , let $m_x = \lim_n \text{Val}_x(G_{f_n})$, where $\text{Val}_x(G_{f_n})$ means the value of the game with payoff f_n , starting from x . (The value of games with upper s.c. payoff function exists, by [5].) Let G_x^* be the one move game which starts at x and has payoff $g = m_y$ if y is the next position hit. Claim $\text{Val}(G_x^*) \geq m_x$.*

PROOF OF LEMMA. We will show by contradiction that for fixed $\varepsilon > 0$, A can play in G_x^* to guarantee that $E(g) \geq m_x - \varepsilon$. Assume not; then for every strategy of A , player B can play to make $E(g) < m_x - \varepsilon$.

For each possible next position, y_i , $i = 1, 2, \dots, k$, let f_{n_i} be such that $\text{Val}_{y_i}(G_{f_{n_i}}) < m_{y_i} + \varepsilon/2$. Let $m = \max_i(n_i)$; so that for all i ,

$$(1) \quad \text{Val}_{y_i}(G_{f_m}) < m_{y_i} + \varepsilon/2.$$

Now for any fixed strategy of player A , let B play according to the assumption, to make $E(g) < m_x - \varepsilon$ and then play $\varepsilon/2$ optimally in G_{f_m} to make

$$\begin{aligned} E_x(f_m) &\leq \sum_{i=1}^k p(y_i) \text{Val}_{y_i}(G_{f_m}) + \varepsilon/2 < \sum_{i=1}^k p(y_i) m_{y_i} + \varepsilon \quad (\text{by (1)}) \\ &= E(g) + \varepsilon < m_x \end{aligned}$$

(by assumption) which contradicts the fact that $m_x = \lim_n \text{Val}_x(G_{f_n})$, and the lemma is proved. \square

Now we are ready for the

PROOF OF THEOREM 2.1. We shall show that for fixed $\varepsilon > 0$, A can guarantee that $E(f) \geq \lim_n \text{Val}(G_{f_n}) - \varepsilon = m_e - \varepsilon$ (where e denotes the empty sequence). This will complete the proof, since $\{\text{Val}(G_{f_n})\}$ is a non-increasing sequence, and so $E(f) \leq \lim_n \text{Val}(G_{f_n})$.

First, let A play optimally in G_e^* , and then, if x_n is the position after the n th move, let A play optimally in $G_{x_n}^*$. Define the random variables $X_0 = m_e$; if $n \geq 1$, $X_n = m_{x_n}$ if x_n is the position after the first n moves. By the lemma, we have $E(X_n | X_{n-1} \dots X_0) \geq X_{n-1} \Rightarrow$

$$(2) \quad E(X_n) \geq m_e$$

for all n .

Now, using the usual facts about upper semicontinuity, for fixed k (if $z = (z_1, z_2, \dots)$ is the resulting sequence of moves), there exists

$N_{(k,z,\varepsilon)}$ such that if $n \geq N_{(k,z,\varepsilon)}$, any sequence $\omega = (\omega_1, \omega_2, \dots)$ agreeing with z up to the n th move has the property

$$\begin{aligned}
 f_k(\omega) < f_k(z) + \varepsilon &\Rightarrow \text{Val}_{(z_1, z_2, \dots, z_n)}(G_{f_k}) < f_k(z) + \varepsilon \\
 &\Rightarrow m_{(z_1, z_2, \dots, z_n)} < f_k(z) + \varepsilon \\
 &\Rightarrow \text{for all } z, \limsup_n X_n(z) < f_k(z) + \varepsilon \\
 &\Rightarrow (\text{by Fatou}) \limsup_n E(X_n) < E(f_k) + \varepsilon \\
 &\Rightarrow E(f_k) > m_e - \varepsilon \quad \text{for all } k \\
 &\Rightarrow E(f) > m_e - \varepsilon
 \end{aligned}$$

(by the dominated convergence theorem). \square

COROLLARY 1. *If f_n are lower semicontinuous, $f_n \uparrow f$, then $\lim_n \text{Val}(G_{f_n}) = \text{Val}(G_f)$.*

PROOF. The negative of an u.s.c. function is l.s.c. so the theorem applies by reversing the roles of the players.

COROLLARY 2. *Games with lower semicontinuous payoff functions can be approximated by finite games.*

PROOF. Suppose f is l.s.c. Define f_n by $f_n(v) = \inf_{\omega \in S} f(\omega)$ where $S = \{\omega \in \Omega \mid \text{1st } n \text{ coordinates of } \omega \text{ agree with the 1st } n \text{ coordinates of } v\}$. Then the games G_{f_n} are “finite”, since the payoff is decided in the first n moves. But the fact that f is l.s.c. implies $f_n \uparrow f$, so we just apply Corollary 1. (The functions f_n are continuous.)

COROLLARY 3. *Open games can be approximated by finite games, i.e., if $f = I_{\mathcal{O}}$ where \mathcal{O} is an open set (in the product topology on Ω) then the game G can be approximated by the games G_n , where the payoff in G_n is 1 if \mathcal{O} is hit by the n th move, 0 otherwise. (This is actually a special case of Corollary 2.)*

PROOF. Immediate since $I_{\mathcal{O}}$ is l.s.c.

A COUNTEREXAMPLE. Approximation theorems do not exist in general as the following example shows. Let $A_n = B_n = \{0, 1\}$ for $n = 1, 2, \dots$, so $\Omega = \prod_{n=1}^{\infty} \{0, 1\} \times \{0, 1\}$. Let $S_n = F_n \cup G$ where $F_n = \{\omega \in \Omega \mid \exists i \leq n \text{ with } \omega_i = (1, 1)\}$ (in other words $F_n = \{\omega \mid \text{both players say 1 on the same move sometime before the } n\text{th move}\}$), and $G = \{\omega \in \Omega \mid \text{player } B \text{ says 0 on every move}\}$. Clearly F_n and G are closed sets, so the functions I_{S_n} are upper semicontinuous. Now the games G_n with payoffs I_{S_n} have value 0 since player B need only say 0 for the first n moves and 1 sometime after that to keep play from hitting S_n . Also since $S_{n+1} \supset S_n$ for all n , $I_{S_n} \uparrow I_S$ where $S = \bigcup_{n=1}^{\infty} S_n$. But the game with payoff I_S has value 1 which player A

can achieve by merely saying 1 on every move. Player B either must say 0 every time or 1 sometime and so S is hit.

AN OPEN QUESTION. We do not know whether if f_n are continuous, $f_n \rightarrow f$, then $\text{Val } G(F_n) \rightarrow \text{Val } G(F)$. This question has some relevance to the study of stochastic games (see [2], [3]).

I wish to express my gratitude to David Blackwell for many helpful conversations during the course of this research.

REFERENCES

1. D. Blackwell, *Infinite G_δ -games with imperfect information*, *Zastos. Mat.* **10** (1969), 99–101. MR **39** #5158.
2. D. Blackwell and T. S. Ferguson, *The big match*, *Ann. Math. Statist.* **39** (1968), 159–163. MR **36** #6211.
3. D. Gillette, *Stochastic games with zero stop probabilities*, Contributions to the Theory of Games, vol. 3, Ann. of Math. Studies, no. 39, Princeton Univ. Press, Princeton, N.J., 1957, pp. 179–187. MR **19**, 1147.
4. J. W. Milnor and L. S. Shapley, *On games of survival*, Contributions to the Theory of Games, vol. 3, Ann. of Math. Studies, no. 39, Princeton Univ. Press, Princeton, N.J., 1957, pp. 15–45. MR **19**, 1147.
5. M. Sion, *On general minimax theorems*, *Pacific J. Math.* **8** (1958), 171–176. MR **20** #3506.

DEPARTMENT OF MATHEMATICS, CASE WESTERN RESERVE UNIVERSITY, CLEVELAND,
OHIO 44106